1+ 1/3+1/6+1/10+...+1/x.(x+1):2= 1 1991/1993
1 1991/1993 la hon so
Tìm x,biết rằng:
a)1/5.8+1/8.11+1/11.14+...1/x(x+3)=101/1540
b)1+1/3+1/6+1/10+...+1/x(x+1):2=1 1991/1993
*1 1991/1993 là hỗn số nha
Ai làm đc giải cụ thể ra nha!thanks
Tìm x biết 1+1/3+1/6+1/10+...+2/x(x+1)=1/1991/1993
Giup minh voi!
Tim x:
a) 1/5.8 + 1/8.11 + 1/11.14 +........+ 1/x(x+3) = 101/1540
b) 1 + 1/3 + 1/6+ 1/10+......+ 1/x(x+1):2 = hon so 1 1991/1993
Ai nhanh nhat dung nhat tick lun!(Nho ghi cach giai ro rang)
còn chi tiết đây
a)1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
1/(5.8)+1/(8.11)+1/(11.14)+...1/x.(… =101/1540
3/(5.8)+3/(8.11)+...+3/x(x+3)=3.(10…
1/5-1/8+1/8-1/11+...+1/x-1/(x+3)=30…
1/5-1/(x+3)=303/1540
1/(x+3)=1/5-303/1540=1/308
=>x=305
lời giải nè : ấn vô dòng đen đen ở dưới ấy nhé
Tìm x, biết:a) 1/5.8 + 1/8.11 + 1/11.14 + ... + 1/x.(x+3)= 101/1540b) 1+ 1/3 + 1/6 + 1/10 +...+ 1/x.(x+1):2 = $1\frac{1991}{1993}$119911993
Tìm x biết 1+1/3+1/6+1/10+...+2/x(x+1)=1/1991/1993
1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) +...+ \(\dfrac{1}{x\left(x+1\right):2}\) = \(1\dfrac{1991}{1993}\)
1+1/3+1/6+1/10+.....+1/x(x+1)=1991/1993
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
1+13+16+110+...+1x(x+2):2=19911993
⟹12+16+112+120+...+1x(x+2)=19911993.2
⟹11.2+12.3+13.4+14.5+...+1x.(x+2)=19911993.2
⟹1−12+12−13+14−15+...+1x−1x+2=19911993.2
⟹1−1x+2=19913986
⟹1x+2=19913986−1
⟹1x+2=−19953986
⟹x+2=−39861995
⟹x=−79761995
1+1/3+1/6+1/10+.....+1/x(x+1)=1991/1993
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
1+13+16+110+...+1x(x+2):2=19911993
⟹12+16+112+120+...+1x(x+2)=19911993.2
⟹11.2+12.3+13.4+14.5+...+1x.(x+2)=19911993.2
⟹1−12+12−13+14−15+...+1x−1x+2=19911993.2
⟹1−1x+2=19913986
⟹1x+2=19913986−1
⟹1x+2=−19953986
⟹x+2=−39861995
⟹x=−79761995
1+1/3+1/6+11/10+.......+1/x(x+1):2=1va 1991/1993
Tính nhanh
1/3 + 1/6 + 1/10 +....+ 1/x(x + 1) = 1 + 1991/1993
Sửa đề : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=1+\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{3984}{1993}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{3984}{1993}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3984}{1993}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{3984}{1993}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1992}{1993}\Leftrightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\Rightarrow x=1993-1=1992\)
Vây x = 1992