Những câu hỏi liên quan
ND
Xem chi tiết
TL
14 tháng 10 2015 lúc 14:34

Quy đồng A ta có:

A = \(\frac{7.9.11...101+5.9.11...101+...+5.7.9...99}{5.7.9...101}\)

Nhận xét:

Các tích 7.9.11...101;....;  5.7.9...97.101 đều chia hết cho 101 nhưng 5.7.9....99 không chia hết cho 101 nên A có  tử số không chia hết cho 101

Mà mẫu chia hết cho 101; 101 là số nguyên tố

=> Tử không chia hết cho mẫu

=> A là phân số  

Bình luận (0)
DL
22 tháng 6 2021 lúc 19:36

@Trần Thị Loan: Vì sao \(5.7.9...99⋮̸11\)vậy bn?

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
Xem chi tiết
JJ
Xem chi tiết
NT
5 tháng 7 2015 lúc 8:19

A= 1/5.7 + 1/7.9 +... + 1/99 . 101 

A= 1/5 -1/7 + 1/7 - 1/9 + ......... + 1/99 - 1/101 

A= 1/5 - 1/101 = 1/116 

=> A ko là số tự nhiên

Bình luận (0)
AM
5 tháng 7 2015 lúc 8:26

Ta thấy:\(\frac{1}{5}

Bình luận (0)
TA
28 tháng 6 2018 lúc 21:24

câu trả lời của Ác Mộng mới đúng

Bình luận (0)
CT
Xem chi tiết
OP
29 tháng 7 2016 lúc 20:37

\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+.....+\frac{1}{101}\)

\(=\frac{1}{2+3}+\frac{1}{3+4}+\frac{1}{4+5}+....+\frac{1}{50+51}\)

Anh quên mất đoạn sau rồi , nhưng hình như đến đây kl là được rồi đấy

Bình luận (0)
NH
Xem chi tiết
TN
26 tháng 5 2015 lúc 22:33

1/5+1/7+1/9+...+1/101 > 1/101+1/101+1/101+...+1/101

1/5+1/7+1/9+...+1/101 > 97/101

                                     97/101 < 1

=> 1/5+1/7+1/9+...+1/101 không là số tự nhiên

Bình luận (0)
TD
25 tháng 7 2017 lúc 21:10

http://sachgiai.com/book/toan-hoc/sach-giai-toan-lop-8-tap-1-page65.html

Bình luận (0)
NG
Xem chi tiết
TG
Xem chi tiết
TL
Xem chi tiết
HV
12 tháng 6 2018 lúc 15:27

Bài 1 : 

a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200) 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100) 
=1/101+1/102+....+1/199+1/200

b.Tổng quát bạn tự làm nhé

Bình luận (0)
TD
12 tháng 6 2018 lúc 15:43

Bài 1 :

Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)

\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)

Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :

\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)

\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)

Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)

Bài 2 :

Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)

\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )

Nhân 2 vế của ( 1 ) với 2^2 .T ta được :

\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)

Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên

Chúc bạn học tốt ( -_- )

Bình luận (0)