Những câu hỏi liên quan
H24
Xem chi tiết

A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100

  =9(1- 1/2 + 1/2 -1/3+...+1/99 -1/100)

  =9.(1- 1/100)

  =9.99/100

  =891/100

Bình luận (0)
NP
2 tháng 5 2019 lúc 15:53

A=9/1.2+9/2.3+...+9/99.100

A/9=1/1.2+1/2.3+....+1/99.100

A/9=1-1/2+1/2-1/3+....+1/99-1/100

A/9=1+(-1/2+1/2)+(-1/3+1/3)+....+(-1/99+1/99)-1/100

A/9=1-1/100

A/9=99/100

A=99/100.9=891/100

     Vậy A=891/100

 mik ko biết đúng hay sai mn góp ý giúp mik nha

Bình luận (0)
H24
2 tháng 5 2019 lúc 15:57

\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{98\cdot99}+\frac{9}{99\cdot100}\)

\(\Rightarrow A=9\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)

\(\Rightarrow A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=9\left(1-\frac{1}{100}\right)=9\cdot\frac{99}{100}=\frac{891}{100}\)

HK TỐT #

Bình luận (0)
NT
Xem chi tiết
NT
31 tháng 7 2023 lúc 11:55

a) \(1.2+2.3+3.4+...+19.20\)

\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)

\(=3080\)

b) \(9+99+999+...+999...9\left(100so9\right)\)

\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)

\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)

\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)

\(=\dfrac{10^{99+1}-1}{99-1}-101\)

\(=\dfrac{10^{100}-1}{98}-101\)

\(=\dfrac{10^{100}-9899}{98}\)

Bình luận (0)
NT
31 tháng 7 2023 lúc 12:07

c) \(999.9x222...2\) (100 số 9; 100 số 2)

\(9x2=18\)

\(99x22=2178\)

\(999x222=\text{221778}\)

\(9999x2222=22217778\)

\(99999x22222=2222177778\)

\(.........\)

Theo quy luật trên ta có 100 số 9 nhân 100 số 2:

\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)

Bình luận (0)
CB
31 tháng 7 2023 lúc 12:30

A, 1.2 + 2. 3 + 3. 4 + ....+ 19 . 20 

\(\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)

⇒3080 

vậy kết quả câu a, là 3080 

 

Bình luận (0)
PH
Xem chi tiết
NT
13 tháng 3 2022 lúc 17:53

\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

Bình luận (0)
RT
Xem chi tiết
VT
4 tháng 5 2016 lúc 13:41

A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100

   = 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)

   = 9. (1 - 1/100)

   = 9 . 99/100

   = 891/100

Bình luận (0)
BH
Xem chi tiết
TN
27 tháng 4 2016 lúc 20:49

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(1-\frac{1}{100}\right)\)

\(A=9\times\frac{99}{100}\)

\(A=\frac{891}{100}\) hoặc =8,91

Bình luận (0)
NH
27 tháng 4 2016 lúc 20:55

A=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100

A=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)

A=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)

A=9.(1/1-1/100)

A=9.99/100

A=891/100

A=8+91/100 ( viết dưới dạng hỗn số )

Vậy A=8+91/100

Nkớ k cho mink đó nha !!!

Bình luận (0)
NL
Xem chi tiết

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=9\left(1-\frac{1}{2020}\right)\)

\(=9.\frac{2019}{2020}\)

\(=\frac{18171}{2020}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 3 2020 lúc 13:20

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)

...

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 3 2020 lúc 13:21

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(A=9.\left(1-\frac{1}{2020}\right)\)

\(A=9.\left(\frac{2020}{2020}-\frac{1}{2020}\right)\)

\(A=9.\frac{2019}{2020}\)

\(A=\frac{18171}{2020}\)

hok tốt!

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
KS
Xem chi tiết
SG
13 tháng 6 2016 lúc 17:48

a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100

a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)

a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)

a = 9.(1 - 1/100)]

a = 9.99/100

a = 891/100

Bình luận (0)
00
13 tháng 6 2016 lúc 18:52

\(a=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
      \(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
      \(=9.\left(1-\frac{1}{100}\right)\)
      \(=9.\)\(\frac{99}{100}\)
      \(=\frac{891}{100}\)

Bình luận (0)
NT
14 tháng 6 2016 lúc 17:11

a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100

a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)

a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)

a = 9.(1 - 1/100)]

a = 9.99/100

a = 891/100

Bình luận (0)
HL
Xem chi tiết
WR
9 tháng 6 2015 lúc 19:34

A=\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

A=9(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\))

A=9(\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\))

A=9(\(1-\frac{1}{100}\))

=9.\(\frac{99}{100}\)

=\(\frac{891}{100}\)

Bình luận (0)
PA
12 tháng 5 2018 lúc 9:36

bạn làm đúng

Bình luận (0)
CA
13 tháng 5 2021 lúc 19:43

lollllolololl

Bình luận (0)
 Khách vãng lai đã xóa