Cho x, y thỏa mãn \(\frac{x+2}{3}=\frac{y-2}{4}\) và x - y =5. Khi đó x + y = ...
Cho x,y,z thỏa mãn \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và x-y=15 khi đó x-y-z=?
Cho các số x;y;x thỏa mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=95 Khi đó x+y+z=
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
x - 1/2 = y - 2/3 = z-3/4 = 2x - 2 + 3y - 6 - z + 3/4 + 9 - 4 = 95 + -5/10 = 10
x-1/2 = 10 => x =21
y-2/3 =10 => y = 32
z-3/4 = 10 => z = 43
Vậy x + y + z = 21 + 32 + 43 = 96
cho x;y;z thỏa mãn \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=14
khi đó x=...; y=...; z=...
Áp dụng t/c vủa dãy tỉ số bằng nhau ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{\left(x-2y+3z\right)-1+4-9}{8}=\frac{14-6}{8}=1\)
=> x - 1 = 2; y - 2 = 3; z - 3 = 4
=> x = 3; y = 5; z = 7
Vậy...
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=14
=> \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)và x-2y+3z=14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)\(=\frac{x-2y+3z-14}{20}=\frac{14-14}{20}=0\)
Từ \(\frac{x-1}{2}=0=>x-1=0=>x=1\)
\(\frac{2y-4}{6}=0=>2y-4=0=>2y=4=>y=2\)
\(\frac{3z-9}{12}=0=>3z-9=0=>3z=9=>z=3\)
ba số x,y,z thỏa mãn \(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}\) và 2x+y+z=14. Khi đó xyz=..........
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)
+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)
+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)
+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)
\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)
Vậy \(xyz=\frac{65856}{1331}\)
Cho x,y,z thỏa mãn \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\) và x - y= 15
Khi đó x - y - z = .........
Ta có :x / 2 = 2x / 4 = 2y / 3 = 2x - 2y / 4 - 3 = 2(x - y) / 1 = 2.15 = 30
=> 3z = 30.4 = 120 => z = 120 : 3 = 40 => x - y - z = 15 - 40 = -25
Cho 2 số x;y<0 thỏa mãn :\(\frac{2}{x}=\frac{5}{y}\)và xy=1000 khi đó x=.......
\(\frac{2}{x}=\frac{5}{y}\Rightarrow\frac{x}{2}=\frac{y}{5}\\ \)
Đặt\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
\(\Rightarrow xy=2k.5k=10k^2\)Mặt khác, \(xy=1000\)\(\Rightarrow10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm10\)
*Với\(k=10\Rightarrow x=20,y=50\)
*Với \(k=-10\Rightarrow x=-20,y=-50\)
Vậy\(\hept{\begin{cases}x=-50,y=-20\\x=50,y=20\end{cases}}\)
theo đề ta có :
xy= 1000 ==> y=1000/x (1)
theo đề ta lại có 2/x =5/y
==> 2y/xy=5x/xy
==> 2y = 5x (2)
thay (1) vào (2) ta đc 2.1000/x=5x
2000/x = 5x
2000 = 5x^2
400 = x^2
==>x=20 hoặc x=-20
mà theo đề thì x,y <0 nên loại x= 20 và nhận x=-20
+ x= -20 thì y = 1000/-20= -50
vậy cặp số x , y thỏa mãn là
x= -20 và y = -50
k cho mk nha
Biết x,y,z thỏa mãn\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x- 2y+ 3z = -10. Khi đó x+y+z
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=>
\(\frac{x-1}{2}\)= \(\frac{2y-4}{6}\)= \(\frac{3z-9}{12}\)= \(\frac{x-1-2y-4+3z-9}{2-6+12}\)=\(\frac{\left(-10\right)-6}{8}\)=\(\frac{-16}{8}\)= -2
-> \(\frac{x-1}{2}\)= - 2 => x = -3 (1)
-> \(\frac{y-2}{3}\)= - 2 => y = -7 (2)
-> \(\frac{z-3}{4}\)= - 2 => z = -5 (3)
Từ (1), (2) và (3) suy ra: x + y + z = (-3) + (-7) + (-5) = - 15
cho x,y,z thỏa mãn\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
và 2x+3y-z=95,khi đó x+y+z=.....
Ta có:\(\frac{x-1}{2}=\frac{2.\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3.\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)
Theo t/c dãy tỉ số = nhau:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{95-5}{9}=\frac{90}{9}=10\)
=> \(\frac{x-1}{2}=10\Rightarrow x-1=10.2=20\Rightarrow x=20+1=21\)
=> \(\frac{y-2}{3}=10\Rightarrow y-2=10.3=30\Rightarrow y=30+2=32\)
=> \(\frac{z-3}{4}=10\Rightarrow z-3=10.4=40\Rightarrow z=40+3=43\)
Vậy x + y + z = 21 + 32 + 43 = 96.
Cho các số x,y,z thỏa mãn\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=95. Khi đó x+y+z=........(kết quả thôi)