(1+2+3+4+5+..+122+123)
tính nhanh:
(1/2+2/3+3/4+4/5+...+122/123+123/124).(125-5.25)
(1/2+2/3+3/4+4/5+...+122/123+123/124).(125-5.25)
=(1/2+2/3+3/4+4/5+...+122/123+123/124).(125-125)
=(1/2+2/3+3/4+4/5+...+122/123+123/124).0=0
1-1/2+1/3-1/4+...+1/121-1/122+1/123=1/62+1/63+...+1/122+1/123
1 - 1/2 + 1/3 - 1/4 + .. + 1/121 - 1/122 + 1/123
= ( 1 + 1/3 + ... + 1/121 + 1/123 ) - ( 1/2 + 1/4 + .. + 1/122 )
Đến bước này ta sẽ cùng cộng 2 vế với : 1/2 + 1/4 + .. + 1/122
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/121 + 1/122 + 1/123 ) - 2. ( 1/2 + 1/4 + .. + 1/122 )
= ( 1 + 1/2 + 1/3 + ...+ 1/122 +1 /123 ) - ( 1 + 1/2 + ...+ 1/61 )
= 1/62 + 1/63 + ..+1/122 + 1/123
Chúc học giỏi !!
1-1/2+1/3-1/4+...+1/121-1/122+1/123=1/62+1/63+...+1/122+1/123
1-1/2+1/3-1/4+...+1/121-1/122+1/123=1/62+1/63+...+1/122+1/123
Tìm x biết, X+1/125+x+2/124+x+3/123+x+4/122+x+146/5=0
Chứng minh rằng:\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{121}-\dfrac{1}{122}+\dfrac{1}{123}=\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{122}+\dfrac{1}{123}\)
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+...+\frac{x+146}{5}=0\)
Chứng minh rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{121}-\frac{1}{122}+\frac{1}{123}=\frac{1}{62}+\frac{1}{63}+...+\frac{1}{122}\)-\(\frac{1}{123}\)
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
\(\dfrac{x+1}{124}\)+\(\dfrac{x+2}{123}\)=\(\dfrac{x+3}{122}\)+\(\dfrac{x+4}{121}\)
\(\dfrac{x+1}{124}+1+\dfrac{x+2}{123}+1=\dfrac{x+3}{122}+1+\dfrac{x+4}{121}+1\)
\(\Leftrightarrow\dfrac{x+125}{124}+\dfrac{x+125}{123}=\dfrac{x+125}{122}+\dfrac{x+125}{121}\)
\(\Leftrightarrow\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\ne0\right)=0\Leftrightarrow x=-125\)
<=>\(\dfrac{x+1}{124}+\dfrac{x+2}{123}-\dfrac{x+3}{122}-\dfrac{x+4}{121}=0\)
<=>\(\left(\dfrac{x+1}{124}+1\right)+\left(\dfrac{x+2}{123}+1\right)-\left(\dfrac{x+3}{122}+1\right)-\left(\dfrac{x+4}{121}+1\right)=0\)
<=>\(\dfrac{x+125}{124}+\dfrac{x+125}{123}-\dfrac{x+125}{122}-\dfrac{x+125}{121}=0\)
<=>\(\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\right)=0\)
<=>x+125=0
<=>x=-125