Những câu hỏi liên quan
NC
Xem chi tiết
FT
23 tháng 1 2016 lúc 20:21

2^n =10a +b . do 0<b<9 
=> b là chữ số tậm cùng của 2^n 
xét n=4k tức n chia hết cho 4 
=> 2^n có tận cùng là 6 
=> b=6 => ab chia hết cho 6 
xét n=4k + r với 1 ≤ r ≤ 3 và r là số nguyên 
=> 2^n =10a + b 
=> b chia hết cho 2 ,giờ ta phải cm a chia hết cho 3 
2^n =(2^4k)*2^r do 2^4k luôn có tận cùng là 6 mà 2 ≤ 2^r ≤8 
=> 2^4k *2^r có tận cùng thuộc { 2,4,8} 
=> b= 2^r vs r nguyên và 1 ≤ r ≤ 3 
=> 10 a =2^n -b =2^n -2^r =2^r ( 2^4k -1) chia hết cho 3 ( do 2^4k -1 chia hết cho 3) 
=> 10a chia hết cho 3 => a chia hết cho 3 
mà b chia hết cho 2 
=> ab chia hết cho 6

Bình luận (0)
CO
23 tháng 7 2016 lúc 20:18

bạn ơi, bạn có biết giải bài này bằng đồng dư thức không?

Bình luận (0)
H24
29 tháng 3 2018 lúc 22:50

bạn ơi!sao b=2^r

Bình luận (0)
TL
Xem chi tiết
ND
Xem chi tiết
DA
Xem chi tiết
LN
18 tháng 1 2018 lúc 21:09

câu này hay ghê

Bình luận (0)
LG
18 tháng 2 2018 lúc 20:58

em mới lp 7 nên e hổng bt lm

sorry cj nhé

nhìn cx khó nhỉ

Bình luận (0)
LT
3 tháng 4 2018 lúc 20:09

do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16 

Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8 

TH1 2^n có tận cùng là 2 => n = 4k+1 

=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10) 

ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a 

do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3 

=> a.b = a.2 chia hết cho 6 (1) 

TH2 2^n có tận cùng là 4 => n = 4k +2 

=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10) 

=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a 

=> 4(2^4k - 1) = 10 a 

ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3 

=> a.b chia hết cho 6 (2) 

Th3 2^n có tận cùng là 8 => n = 4k +3 

TH 3 2^n có tận cùng là 6 => n = 4k 

bằng cách làm tương tự ta luôn có a.b chia hết cho 6

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 2 2016 lúc 17:46

cho n thuộc N và n > 3

Bình luận (0)
TP
Xem chi tiết
KG
Xem chi tiết
UT

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

Bình luận (0)
LA
10 tháng 12 2023 lúc 20:40

Rảnh à?

 

Bình luận (0)
LH
Xem chi tiết
AH
29 tháng 10 2024 lúc 22:53

$a$ có thỏa mãn $0< a< 10$ không hả bạn?

Bình luận (0)
VT
Xem chi tiết