biết :3n+1 và 5n+1 ko là 2 số nguyên tố cùng nhau.Tìm ƯCLN(3n+1;5n+4)
Biết rằng 3n+1 và 5n+4(n thuộc N)là 2 số ko nguyên tố cùng nhau.Tìm ƯCLN của 3n+1 và 5n+4.
Gọi d là ƯCLN (3n+1,5n+4)
Ta có :3n+1 chia hết cho d suy ra 5.(3n+1) chia hết cho d
5n+4 chia hết cho d suy ra 3.(5n+4) chia hết cho d
suy ra 3.(5n+4)-5.(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
suy ra 7 chia hết cho d
suy ra d thuộc Ư(7)
suy ra d=(1,7)
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cx nhau
Vậy ƯCLN(3n+1 và 5n+4 )=7
Biết rằng 3n+1 và 5n+4 (n thuộcN sao) là 2 số nguyên tố ko cùng nhau.Tìm ƯCLN(3n+1,5n+4)
Biết 3n+1 và 5n+4 là 2 số nguyên tố cùng nhau.Tìm ƯCLN(5n+1;3n+4).
3n + 1 và 5n + 4 là hai số nguyên tố cùng nhau
=? ƯCLN của chúng = 1
biết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trênbiết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trên
Câu hỏi tương tự nhé bạn !
UCLN = 7
Tick mình nha
Biết rằng 3n+1 và 5n+4(n thuộc N) là 2 số không nguyên tố cùng nhau.Tìm ước chung lớn nhất của 3n+1 và 5n+4
Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d
=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d
=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}
=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7
Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}
Gọi ƯCLN hai số đó là D
=> 3n+1 :D và 5n+4 :D
=> 5.(3n+1):D và 3.(5n+4):D
=> 15.n+12 - 15.n+5 :D
=> 7:D
=> D thuộc Ư<7>={1,7}
Biết rằng 3n+1 và 5n+4 (n thuộc N) là 2 số ko nguyên tố cùng nhau. Tìm ƯCLN(3n+1,5n+4)
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
Bạn có chắc chắn câu trả lời của bạn ko?
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
chúc bn hok tốt @_@
biết 3n+1 và 5n+4(n \(\in\)N)là 2 số ko nguyên tố cùng nhau.Tìm ước chung lớn nhất (3n+1;5n+4)
Biết rằng 3n + 1 và 5n + 4 ( n E N ) là hai số không nguyên tố cùng nhau. Khi đó ƯCLN của 3n + 1 và 5n + 4 là bao nhiêu?
Tìm ƯCLN của 3n + 1 và 5n + 4
Biết rằng 3n + 1 và 5n + 4 không phải là 2 số nguyên tố cùng nhau.
Gọi ƯCLN ( 3n+1 ; 5n+4 ) là d ( d là số tự nhiên )
=> 3n+1 chia hết cho d ; 5n+4 chia hết cho d
=> 5.(3n+1) chia hết cho d ; 3.(5n+4) chia hết cho d
=> 15n+5 chia hết cho d ; 15n+12 chia hết cho d
=> 15n+12 - (15n+5) chia hết cho d
=> 7 chia hết cho d
=> d= 1;7
=> 3n + 1 và 5n + 4 không phải là 2 số nguyên tố cùng nhau.
=> d= 7
=> ƯCLN ( 3n+1 ; 5n+4 ) = 7