Những câu hỏi liên quan
ND
Xem chi tiết
OS
Xem chi tiết
H24
3 tháng 4 2018 lúc 16:12

\(A=\left(n+2010^{2011}\right)\left(n+2011\right)\)

=> \(A=\left(n+2010-2010+2010^{2011}\right)\left(n+2011\right)\)

=> \(A=\left[\left(n+2010\right)-\left(2010-2010^{2011}\right)\right]\left(n+2011\right)\)

=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)\)

Vì n là số tự nhiên nên (n+2010) và (n+2011) là 2 số tự nhiên  => (n+2010)(n+2011) chia hết cho 2 

( vì tích 2 số tự nhiên liên tiếp luôn chia hết cho 2) 

Mặt khác dễ thấy 2010-2010^11 có chữ số tận cùng là 0 nên chia hết cho 2 

=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)⋮2\) ( Với mọi n \(\in\)N )

Bình luận (0)
Xem chi tiết
NA
29 tháng 3 2019 lúc 9:04

Bài 1: Mình không biết làm.

Bài 2:

TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)

=> (n+20102011) chia hết cho 2.

Nên (n+20102011)(n+2011) chia hết cho 2

TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)

=> n + 2011 chia hết cho 2

Nên (n+20102011)(n+2011) chia hết cho 2

Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N

Bình luận (0)
SK
Xem chi tiết
Yu
Xem chi tiết
PL
15 tháng 10 2015 lúc 16:16

a,

Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:

a=3k hoạc a=3k+1 hoặc a=3k+2

* Nếu a=3k thì a sẽ chia hết cho 2.                                                                                   (1)

* Nếu a=3k+2 thì a+1=3k+2

                          a    =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3                                                                                          (2)

* Nếu a=3k+1 thì a+2=3k+1

                          a   =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=>  3k+3 chia hết cho 3 hay a+2 chia hết cho 3                                                                                         (3)

Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Bình luận (0)
MM
Xem chi tiết
VM
23 tháng 10 2019 lúc 15:53

2011 có tổng các chữ số là 2+0+1+1=4 \(⋮̸3\)=> 2011 không chia hết cho 3 => 2011n \(⋮̸3\)

Ta biết rằng 3 số liên tiếp luôn tồn tại ít nhất một số chia hết cho 3

xét 3 số  2011n ; 2011n +1; 2011n +2 là 3 số liên tiếp mà 2011n \(⋮̸3\)=> 1 trong 2 số còn lại phải chia hết cho 3 => (2011n +1)(2011n +2) \(⋮3\)với mọi n tự nhiên

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
PN
20 tháng 10 2017 lúc 21:11

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)

     +Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)

2)Tg tự câu a

Bình luận (0)
HH
19 tháng 12 2021 lúc 14:05

1 + 1 = 

em can gap!!!

Nhanh e k cho

Bình luận (1)
 Khách vãng lai đã xóa
KT
11 tháng 8 2022 lúc 10:09

1 + 1 = 2 

Bình luận (0)
TQ
Xem chi tiết
HG
21 tháng 10 2015 lúc 23:25

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

Bình luận (0)
HG
21 tháng 10 2015 lúc 23:33

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

Bình luận (0)
HP
Xem chi tiết
H24
17 tháng 10 2018 lúc 22:10

xa xa, các bạn sẽ thấy  lũy tre như bức tuờng thành kiên cố đang  bảo vệ bao quanh thôn xóm mìnhcây tre nhỏ nhắn với thân dài thẳng, được chia thành những đốt nhỏ đều nhau. Thân cây thường có màu xanh thẫm, các đốt thì có màu hơi xanh đậm hơi vàng. Cây tre không đứng riêng lẻ với nhau, mà thường tạo thành từng lũy với cây này tựa cây kia, dựa vào nhau cùng vươn lên bất chấp nắng mưa để đón lấy ánh sớm bình minh. Các nhánh tre thường không mọc trên cao mà mọc ngay gần dưới đất, chúng có rất nhiều gai gồ ghề và thường rất nhỏ. Còn lá tre thì mỏng, nhọn, to chỉ bằng nửa lá xoài mà thôi, tuy lá tre trông mảnh khảnh nhưng rất dẻo dai.  Họ nhà tre có đến vài chục loại khác nhau, nhưng cùng một điểm tương đồng, đó là cùng có mầm non măng mọc thẳng. Và tre cũng có hoa đó các bạn, nhưng phải hơn 100 năm nó mới ra hoa một lần. Hoa tre mọc thành từng chùm có màu vàng nhạt. Mùi thơm của hoa tre cũng rất đặc biệt đó ạ!  Cây tre có nhiều loại, mỗi loại lại mang đến cho chúng ta một công dụng riêng. Có tre to để đan lát, có tre để làm hàng thủ công. Tre còn có thể được sử dụng để làm nhà cửa, lều quán. Tre gai lại là người canh gác giúp cho cho luỹ làng ta trở nên kiên cố..Không chỉ trở thành những vật dụng đồng hành cùng người nông dân trong cuộc sống thường ngày, cuộc sống lao động, cây tre còn có vai trò rất quan trọng trong thời kháng chiến. Ở đó, “tre giữ làng, giữ nước, giữ mái nhà tranh, giữ đồng lúa chín” (Thép Mới). Trong lúc mà dân ta chưa có vũ khí hiện đại, vu khí đều sử dụng phụ thuộc cả vào thiên nhiên. Tre với tính chất dẻo dai mà cứng rắn đã trở thành một vũ khí vô cùng lợi hại của dân ta. Chúng ta ắt hẳn vẫn còn nhớ tới truyền thuyết Thánh Gióng, bẻ tre bên đường, đánh cho quân xâm lược không còn manh giáp. Hay sự kiện Ngô Quyền dùng cọc tre và lợi dụng thủy triều đánh tan quân Nam Hán trên song Bạch Đằng vào năm 938. Đó là minh chứng rất cụ thể cho vai trò to lớn của cây tre trong những trận chiến khốc liệt dành độc lập dân tộc.  Có tầm quan trọng như vậy, từ lâu cây tre đã đi vào tiềm thức của người dân Việt với rất nhiều biểu tượng. Tre luôn mọc thành lũy, thành hàng chứ không bao giờ mọc một mình, đó là tinh thần đoàn kết, đồng lòng. Tre mọc thẳng, mọc cao, không bao giờ mọc nghiêng, cùng sự dẻo dai dễ sống của cây là biểu hiện rõ nhất cho sự kiên cường, bất khuất. Đó đều là những phẩm chất đáng quý của con người Việt Nam, dân tộc Việt Nam, nên mới nói, nhắc đến cây tre là nhắc đến con người Việt Nam.  Tre thật đẹp, thật có ích. Tre là biểu tượng không thể phai đổi, không thể mất đi, tre già măng mọc, sẽ còn mãi đến mai sau. Dù là chiến tranh đã lùi xa, cuộc sống trở nên hiện đại hơn nhưng cây tre vẫn mãi giữ một vị trí quan trọng trong tâm hồn người Việt.

Bình luận (0)