CMR: 7ab(a^2-b^2) chia hết cho 42; a,b thuoc Z
chung minh 7ab (a^2-b^2) chia het 42 a,b thuoc z
Cho 7a^2-1 chia hết cho 7ab-1. Tính a^2000-b^2000
Giải:
Theo giả thiết suy ra b(7a^2-1)=a(7ab-1)+a-b chia hết cho 7ab-1 nên a-b chia hết cho 7ab-1. Xét 2 trường hợp:
Nếu a-b ≥ 0
⇔ a ≥ b
Đặt a-b=k (7ab-1) với k tự nhiên.
Nếu k lớn hơn bằng 1 thì a-b ≥ 7ab-1 rồi chuyển vế sang, phân tích thành bất pt ước số rồi chứng minh vô lí vì a,b nguyên dương.
Do đó k=0 nên a=b
⇒M=0.
Nếu a-b < 0 > a
Đặt b-a=p(7ab-1) với p nguyên dương.
Làm tương tự như trên, nhưng lần này khác là ko có p thỏa mãn (vì p nguyên dương, còn ở trên k tự nhiên).
Chúc bạn học tốt1
Theo giả thiết suy ra b(7a^2-1)=a(7ab-1)+a-b chia hết cho 7ab-1 nên a-b chia hết cho 7ab-1. Xét 2 trường hợp:
Nếu a-b>=0 <=> a>=b.
Đặt a-b=k(7ab-1) với k tự nhiên.
Nếu k lớn hơn bằng 1 thì a-b>=7ab-1 rồi chuyển vế sang, phân tích thành bất pt ước số rồi chứng minh vô lí vì a,b nguyên dương.
Do đó k=0 nên a=b => M=0.
Nếu a-b<0> a Đặt b-a=p(7ab-1) với p nguyên dương.
Làm tương tự như trên, nhưng lần này khác là ko có p thỏa mãn (vì p nguyên dương, còn ở trên k tự nhiên).
Chúc bạn hoc tốt!
xác định các chữ số a,b để
a 7ab chia hết cho 2,3,5,9
b 75ab chia hết cho 90
c 1a6b chia hết cho 2 và 9 còn còn chia hết cho 5 dư 3
bài 1
cho A = 2+2^2+2^3+........+2^2010.chứng minh rằng :A chia hết cho 42
bài 2
cho B=3^+ 3^2+3^3+........+3^60.chứng minh rằng :B chia hết cho 4;13;12;40
bài 3
cho A= 4+4^2+4^3+..........+4^47+4^48 CMR :A chia hết cho 84
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
Cho
A=2+22+...+259+266
a Tính A
b CMR A chia hết cho 42
a)Ta có A=2+2^2+....+2^66
2A=2^2+2^3+....+2^67
=>A=2^67-2=147573952589676412926
b) Ta có 147573952589676412926:42=3513665537849438403
=> A chia hết cho 42( đpcm)
Vậy ,.....
Cho các số nguyên dương a; b thỏa mãn 7a^2-1 chia hết cho 7ab-1. Tính giá trị của biểu thức M= a^2019 - b^2019
CMR: A= 2+2^2+2^3+.....+2^59+2^60. chia hết cho 42. giúp mk nha ^.^. cảm ơn
Ta có: \(42=2.3.7\)nên để chứng minh \(A\)chia hết cho \(42\)thì ta chứng minh \(A\)chia hết cho \(2,3,7\).
- Vì \(A\)là tổng của các số hạng chia hết cho \(2\)nên \(A⋮2\).
- \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{59}\right)⋮3\).
- \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=7\left(2+2^4+...+2^{58}\right)⋮7\)
Từ đây ta có đpcm.
CMR :
A = n2 + 7n + 42 không chia hết cho 7
72 + 7.7 + 42 chia hết cho 7 (vố lí)
sai đề
A = n2 + 7n + 42
Nếu n \(⋮̸\) 7 thì n2 sẽ \(⋮̸\) 7(Đương nhiên 7n và 42 sẽ \(⋮\) 7). Khi đó n2 + 7n + 42 sẽ \(⋮̸\)7
Nhưng đề bài không cho biết n có \(⋮\) 7 hay không nên có khi n2 + 7n + 42 sẽ \(⋮\) 7
\(\Rightarrow\) Đề thiếu
1,Cho p là số nguyên tố >7.CM 3p -2p -1 chia hết cho 42p
2,Cho q=(a+b+c).(ab+bc+ac) -2abc.Với mọi a,b,c là các số nguyên .CMR nếu a+b+c chia hết cho 4 thì q chia hết cho 4
3,CM tích 8 só nguyên liên tiếp chia hết cho 384