Tập hợp số dư có thể có khi chia một số chính phương cho 5 là
Tập hợp số dư có thể khi chia một số chính phương cho 5 là:
một số chính phương khi chia cho 5 ,số dư có thể là bao nhiêu ?
BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
số chính phương khi chia cho 5 thì số dư có thể bằng ?
Chứng minh rằng một số chính phương khi chia cho 9 chỉ có thể có các số dư là: 0; 1; 4 hoặc 7.
Viết tiếp vào chỗ chấm cho thích hợp:
Khi ChiA một số có 4 chữ số cho 5, các số dư có thể là:....
Khi chia một số có 4 chữ số cho 6,số dư lớn nhất có thể là:....
Khi chia một số có 4 chữ số cho 5, các số dư có thể là: 1,2,3,4
Khi chia một số có 4 chữ số cho 6, số dư lớn nhất có thể là: 5
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?