Những câu hỏi liên quan
CS
Xem chi tiết
VH
11 tháng 3 2015 lúc 13:09

ra 125 may thang em cua anh a

Bình luận (0)
SS
17 tháng 3 2017 lúc 18:31

thế ra làm sao dc phai 1000/(a+b+c)=abc moi ra dc la 125

con the nay thi chiu

Bình luận (0)
TH
Xem chi tiết
NM
19 tháng 12 2023 lúc 11:03

\(\Rightarrow\dfrac{100xa+10xb+c}{1000}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\dfrac{\overline{abc}}{1000}=\dfrac{1}{a+b+c}\Rightarrow\overline{abc}=\dfrac{1000}{a+b+c}\)

Do \(\overline{abc}\) là số có 3 chữ số \(\Rightarrow\overline{abc}>100\)

\(\Rightarrow\dfrac{1000}{a+b+c}>100\Rightarrow a+b+c< 1000:100=10\)

Do \(\overline{abc}\) là số nguyên \(\Rightarrow1000⋮a+b+c\)

=> a+b+c=2 hoặc a+b+c=4 hoặc a+b+c=5 hoặc a+b+c=8

Thử với từng trường hợp ta có a+b+c=8 => \(\overline{abc}=125\) thỏa mãn yêu cầu của đề bài

 

Bình luận (0)
HC
Xem chi tiết
H24
3 tháng 3 2016 lúc 20:51

a) Theo đề bài ta có : 36 = ab( a + b ) . Suy ra a + b là Ư(36). Vì a, b là chữ số, hơn nữa a khác 0, do đó 1 bé hơn hoặc bằng a+b bé hơn hoặc bằng 18, nên a+b nhận các giá trị là : 1; 2; 3; 6; 10; 12; 18.

    Với a+b =1 hoặc a+b=2 thì ab=36 hoặc ab=18 nhưng khi đó a+b =9 trái với điều kiện a+b=1 hoặc a+b=2

   Với a+b=3 thì ab=12, khi đó thỏa mãn đề bài.

   Với a+b=4,a+b=6,a+b=9, a+b=12 hoặc a+b=18 thì ab đều là số có một chữ số, vô lí !

   Vậy có duy nhất a=1,b=2 là thỏa mãn đề bài

Ôi ! tớ chỉ giải mỗi phần a) thôi. Còn phần b) thì giải tương tự và kết quả tớ tính ra là :a=1, b=2, c=5

nhé :)

Bình luận (0)
VM
Xem chi tiết
TA
Xem chi tiết
MC
12 tháng 4 2016 lúc 11:50

Ta có: 1 x 1000 = (a + b + c) x abc

Vậy: 1000 = (a + b + c) x abc

chỉ có 1 số thỏa mãn điều kiện này là 125

dáp số 125

Bình luận (0)
AP
Xem chi tiết
AF
7 tháng 4 2017 lúc 10:11

a = 1

b = 2

c = 5

Bình luận (0)
TF
7 tháng 4 2017 lúc 10:10

a = 1, b = 2, c = 5

Thử lại :

\(\frac{1000}{1+2+5}=\frac{1000}{8}=125\)

k nha

Bình luận (0)
AP
7 tháng 4 2017 lúc 10:36

mk cần lời giải các bạn ơi

Bình luận (0)
HC
Xem chi tiết
DN
Xem chi tiết
HM
29 tháng 3 2015 lúc 19:48

Vì abc<1000

=>a<7

=>abc<700

=> 1<=a,b,c<=5

Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5

Thật vậy: Giả sử cả 3 số a,b,c<=4

=>abc<=72<100 vô lí

Do đó a=5 hoặc b=5 hoặc c=5

*Nếu a=5

Ta có

500+bc=5!+b!+c!<=240+b!

=>b!+240>500

=>b!>260

=>b>5 vô lí

Nên a<=4

*Nếu b=5

Lập luận tương tự b<=4

*Nếu c=5

Tìm được a=1;b=4

Vậy…

Bình luận (0)
BG
17 tháng 3 2018 lúc 19:34

abc=100a+ 10b +c =a! +b! +c!. 
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0 
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7) 
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải) 
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)] 
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ] 
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5 
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5 
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c ) 
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b ) 
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5 
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c) 
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4 
vậy abc= 145. 
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6

Bình luận (0)
TL
Xem chi tiết
ML
1 tháng 7 2015 lúc 18:35

+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.

(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)

Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.

Tìm x;y  5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)

Ta tìm được 1! + 4! + 5! = 145

Vậy a = 1; b = 4; c = 5.

Bình luận (0)
ML
1 tháng 7 2015 lúc 18:38

+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.

(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)

Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.

Tìm x;y  5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)

Ta tìm được 1! + 4! + 5! = 145

Vậy a = 1; b = 4; c = 5

Bình luận (0)
ML
1 tháng 7 2015 lúc 19:03

+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.

(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)

Ta có: 5! +5! +5! = 360 (không thỏa) => abc ≤ 5! + 5! + 4! =264
=> a ≤ 2 => a = 2 hoặc a = 1
+a = 2
 5! + 2! + x! = 25x hoặc 2x5 . Thử x = 1; 2; 3; 4; 5  ta thấy đều không thỏa.
+a = 1
1! + 5! + x! = 15x hoặc 1x5. Thử x = 1;2;3;4;5 ta tìm được x = 4 thì 1! + 4! + 5! = 145 (thỏa mãn).

Vậy a = 1; b = 4; c = 5
1! + 4! + 5! = 145 là trường hợp duy nhất thỏa đề

Bình luận (0)