Những câu hỏi liên quan
BH
Xem chi tiết
AH
9 tháng 7 2024 lúc 23:00

Lời giải:

$S=3^0+3^2+3^4+...+3^{2014}$

$3^2S=3^2+3^4+3^6+...+3^{2016}$

$\Rightarrow 3^2S-S=3^{2016}-3^0$

$\Rightarrow 8S=3^{2016}-1$

$\Rightarrow S=\frac{3^{2016}-1}{8}$

b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$

$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$

$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$

$=7.13(1+3^6+...+3^{2010})\vdots 7$.

Bình luận (0)
TN
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
H24
19 tháng 10 2015 lúc 13:25

b) S = 30 + 32 + 34 + .. + 32014

S = (30 + 32 + 34) + (36 + 38 + 310) + ... + (32010 + 32012 + 32014)

S = 30(1 + 32 + 34) + 36.(1 + 32 + 34) + ... + 32010.(1 + 32 + 34)

S = 30.91 + 36.91 + ... + 32010.91

S = 91.(30 + 36 + .. + 32010) = 7.13.(30 + 36 + .. + 32010)

Vì tích trên có thừa số 7 => S chia hết cho 7 

Bình luận (0)
H24
19 tháng 10 2015 lúc 13:18

S = 30 + 32 + 34 + ... + 32014

=> 32. S = 32.(30 + 32 + 34 + ... + 32014) = 32 + 34 + 36 + ... + 32016

=> 32.S - S = (32 + 34 + 36 + ... + 32016) - (30 + 32 + 34 + ... + 32014) = 32016 - 1 

=> 8.S = 32016 - 1 

=> S = \(\frac{3^{2016}-1}{8}\)

Bình luận (0)
HN
Xem chi tiết
TD
11 tháng 10 2018 lúc 17:24

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
NN
Xem chi tiết
NT
20 tháng 8 2021 lúc 21:59

\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(=1+3^2+3^4+3^6+...+3^{2014}\)

\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)

\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
LG
9 tháng 10 2015 lúc 10:55

a) Có:(2014-4):3+1=671 số hạng

    S=(2014+4).671:2=677039

c) ..........................................................

Bình luận (0)
NT
Xem chi tiết