CMR: 1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
so sánh A=1/5+1/13+1/25+1/41+1/61+1/85+1/113 với 1/2
\(S1=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}<\frac{1}{2}\)
1- ( 1/5 +1/13+1/25+1/41+1/61+1/85+1/113)
So sánh với 1/2.
Chứng minh rằng: 1/3+1/13+1/25+1/41+1/61+1/85+1/113<2
chung minh rang:
1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
1/5+1/13+1/25+1/41+1/61+1/85+1/113
=1/5+(1/13+1/25+1/41)+(1/85+1/61+1/113)<15+1/12+1/12+1/12+1/60+1/60+1/60
..............................................................<1/5+1/4+1/20
..............................................................<4/20+5/20+1/20
..............................................................<1/2
Cảm ơn nhiều (đúng lúc đang cần,hì ,hì)
ai giúp mk bài này với, nhanh lên nha
1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
Chứng tỏ rằng
1/5/1/13+1/25+1/41+1/61+1/85+1/113<1/2
Gíup mik nha gấp lắm
xem lại đề,1/5/1/13 là sao bạn,có phải là 1/5+1/13 không
Chứng minh rằng
1/5+1/13+1/25+1/41+1/61+1/85+1/113 < 2
Bài này mk ko hiểu.Giải hộ mk vs >.<
đặt A=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}\)
= \(\dfrac{1}{5}+(\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41})+(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113})\)
=> A< \(\dfrac{1}{5}+(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12})+(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60})\)
A<\(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)=\(\dfrac{1}{2}\)
vậy A<\(\dfrac{1}{2}\),<2=> A<2 (đpcm)
chứng tỏ: a, 1/5 + 1/6 + 1/7 + .... + 1/17 < 2
b, 1/5 + 1/13 + 1/25 + 1/41 + 1/61 + 1/85 + 1/113 < 1/2
a, 1/5+1/6+1/7+1/8+1/9 < 1/5.5=1 (1)
1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17 < 1/10.7 < 1/10.10 < 1 (2)
Từ (1) và (2) , suy ra 1/5+1/6+1/7+...+1/17 < 1+1 =2
Suy ra , 1/5+1/6+1/7+...+1/17 < 2
b, Ta cần c/m 1/13+1/25+1/41+1/61+1/85+1/113 < 3/10 (Vì 1/2 - 1/5 = 3/10)
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10+1/25+1/25+1/25+1/25+1/25
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10 + 5/25 = 1/10+1/5 = 3/10
Suy ra , 1/5+1/13+1/25+1/41+1/61+1/85+1/113 < 1/2