tìm n để n^2 +2006 là 1 số chính phương
tìm n để n^2+2006 là 1 số chính phương
Giả sử n2+2016=m2
2016=m2-n2
2016=(m-n)(m+n)
Vì 2016 là 1 số chẵn nên trong tích (m-n)(m+n) phải có ít nhất 1 số chẵn (1)
Mặt khác (m+n)-(m-n)=2n nên cả 2 số phải cùng lẻ hoặc cùng chẵn (2)
Từ (1) và (2) => Cả 2 thừa số đều là chẵn
Đặt m+n=2h
m-n=2t
Ta có 2h.2t=2016
4.(h.t)=2016
=> 2016 phải chia hết cho 4
Nhưng 2016 ko chia hết cho 4 nên ko có số nào thỏa mãn đề bài
Ủng hộ mk nha
Tìm n để n^2 + 2006 là 1 số chính phương
Ta thấy n2 là số chính phương
=> n2 chia cho 4 dư 0 hoặc 1
Mà 2006 chia cho 4 dư 2
=> n2 + 2006 chia cho 4 dư 2 hoặc 3
=> n2 + 2006 không là số chính phương
=> Không có số tự nhiên n thỏa mãn đề bài.
Bài làm
Ta thấy rõ n2 là số chính phương
<=> n2 chia hết cho 4 hoặc dư 1
Mà số 2006 chia cho 4 dư 2
<=> n2 + 2006 chia cho 4 dư 2 hoặc 3
<=> n2 + 2006 không là số chính phương
Vậy không có số tự nhiên n thỏa mãn đề bài.
P/s ko bt có đúng ko
tìm n để n mũ 2 + 2006 là 1 số chính phương
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tìm n để n^2+2006 là 1 số chính phương
a/Tìm n để n^2 + 2006 là 1 số chính phương
b/Cho n là số nguyên tố lớn hơn 3. Hỏi n^2 + 2006 là số nguyên tố hay hợp số
a) Tìm n để n^2+2006 là 1 số chính phương.
b)cho n là số nguyên tố lớn hơn 3. Hỏi n^2+2006 là số nguyên tố hay là hợp số.
a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)
\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )
Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2
=> a + n và a - n có cùng tính chẵn lẻ
TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )
TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1
Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương
b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))
TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
Vậy \(n^2+2006\)là hợp số
Tìm STN n để n^2+2006 là 1 số chính phương
hahaha. đây mà là toán lớp 1 à? đùa dai quá!
đây mà là toán lớp 1 . vớ vẩn
Tìm n để n2 +2006 là 1 số chính phương ?
b.Cho n là số nguyên tố >3. Hỏi n2 +2006 là số nguyên tố hay là hợp số
Tìm n để n^2 + 2006 là số chính phương
a) Đặt n2+2006=a2(a∈Z)n2+2006=a2(a∈Z)
⇒2006=a2−n2=(a−n)(a+n)(1)⇒2006=a2−n2=(a−n)(a+n)(1)
Mà (a+n)-(a-n)=2n⋮⋮2
=> a+n và a-n cg tính chẵn, lẻ
TH1: a+n; a-n cg lẻ => (a+n)(a-n) lẻ trái với (1)
TH2: a+n; a-n cg chẵn => (a+n)(a-n) chia hết cho 4, trái với (1)
Vậy không tìm đc n để n2+2006n2+2006 là số chính phương
cam on nha