tìm số tự nhiên nhỏ nhất biết rằng khia chia 3, 4, 5, 6 có số dư là 2, chia 7 dư 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số tự nhiên nhỏ nhất biết rằng:
a,Khia chia số đó cho 5,6,7,8 được các số dư lần lượt là 1,2,3,4
b,Khia chia số đó cho 3 dư 1,chia cho 5 dư 3 và chia cho 7 dư 5
c/Khi chia cho 3,cho 4,cho 5,cho 7,cho 9 có số dư theo thứ tự là 1,3,1
d/Khia chia cho 5,cho 7,cho 9 có số dư theo thứ tự là 3;4;5
a,Theo đề bài, a : 5,6,7,8 (dư lần lượt 1,2,3,4)
Vậy (a+4) chia hết cho 5,6,7,8 Mà BCNN của 5,6,7,8 là: 23 . 7. 3. 5= 840
a=840-4=836
Đáp số: 836
Tìm số tự nhiên nhỏ nhất sao cho khia chia số đó cho 2 dư 1 , cho 3 dư 2 , cho 4 dư 3 ,cho 5 dư 4 , cho 6 dư 5 , cho 7 dư 6
dựa bài này mà làm
Tìm số tự nhiên nhỏ nhất x sao cho x chia 5 dư 1 chia 6 dư 2 chia 7 dư 3 chia 8 dư 4?
Gọi số cần tìm là a thì a + 4 chia hết cho 5; 6; 7; 8, suy ra a+4 là BC(5; 6; 7; 8). mà a nhỏ nhất nên a+4 là BCNN(5; 6; 7; 8)
Ta có: BCNN(5; 6; 7; 8) = 840
Vậy a = 836
gọi số đó là a nếu a được cộng thêm 1 thì các phép chia cho 2; 3; 4; 5; 6; 7 đều là chia hết
vậy a + 1 là bội của 2; 3; 4; 5; 6; 7
ta cần tim bội chung nhỏ nhất của a + 1 như như vây sẽ tim ra a nhỏ nhất
1.Tìm số tự nhiên nhỏ nhất ( khác 0) chia hết cho 4, 6, 8, 10, 12.
2..Tìm số tự nhiên nhỏ nhất ( khác1) chia cho 3, 5, 6, 7, 8, 9, 11, 12 đều dư 1.
3. Tìm số tự nhiên biết rằng chia 4, 9 dư 2 ; hiệu hai thương là 170.
4. Tính tổng tất cả các số có 3 chữ số có hàng trăm là 6, chia 2, 5 dư 1 chia 3 dư 2.
1.Tìm số tự nhiên nhỏ nhất ( khác 0) chia hết cho 4, 6, 8, 10, 12.
2..Tìm số tự nhiên nhỏ nhất ( khác1) chia cho 3, 5, 6, 7, 8, 9, 11, 12 đều dư 1.
3. Tìm số tự nhiên biết rằng chia 4, 9 dư 2 ; hiệu hai thương là 170.
4. Tính tổng tất cả các số có 3 chữ số có hàng trăm là 6, chia 2, 5 dư 1 chia 3 dư 2.
phân tích từng số thành thừa số nguyên tố rồi tính .
VD: 1 :
4=22 ;;;6=2.3;;; 8=23 ;;;; 10 = 2.5 ;;;; 12 =22.3
=> BCNN(4;6;8;10;12)=23.3.5=`10
nhầm nha
120 chứ ko phải 10
bấm máy nhanh quá
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 3
2/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 11
3/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 4
4/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
lm đc câu nào cx đc cảm ơn nhìu...
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
a) Chứng tỏ rằng 2x+3y chia hết cho 17 khi và chỉ khia 9x+5y chia hết cho 17.
b) Tìm số tự nhiên nhỏ nhất biết số đó chia cho 5 dư 3, chia cho 7 dư 4.
a)
CM chiều xuôi.
Có: \(2x+3y⋮17.\) CMR: \(9x+5y⋮17\)
\(\Rightarrow9\left(2x+3y\right)⋮17\)
\(\Rightarrow18x+27y⋮17\)
\(\Rightarrow18x+10y+17y⋮17\)
MÀ \(17y⋮17\)
\(\Rightarrow2\left(9x+5y\right)⋮17\)
\(\Rightarrow9x+5y⋮17\left(đpcm\right)\) do 2 ko chia hết cho 17
CM chiều đảo:
Có: \(9x+5y⋮17\) . CMR: \(2x+3y⋮17\)
=> \(18x+10y⋮17\)
=> \(18x+27y-17y⋮17\)
=> \(18x+27y⋮17\) do \(17y⋮17\)
=> \(2x+3y⋮17\) do 9 ko chia hết cho 17.
VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.
**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ \(x;y\inℤ\) nhé !!!!
a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17
Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17
Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17.
b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9
a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5
Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)
9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135
2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158
=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158.
a) Ta có : 2x + 3y \(⋮\)17
=> 9(2x + 3y) \(⋮\)17
=> 18x + 27y \(⋮\)17
=> 18x + 10y + 17y \(⋮\)17
=> 2(9x + 5y) + 17y \(⋮\)17
Vì 17y \(⋮\)17
=> 2(9x + 5y) \(⋮\)17
=> 9x + 5y \(⋮\)17 (Vì 2 không chia hết cho 17) (đpcm)
b) Gọi số cần tìm là a
Ta có : \(\hept{\begin{cases}a:5\text{ dư 3}\\a:7\text{ dư 4}\end{cases}}\Rightarrow\hept{\begin{cases}2a:5\text{ dư 1}\\2a:7\text{ dư 1}\end{cases}}\Rightarrow\hept{\begin{cases}\left(2a-1\right)⋮5\\\left(2a-1\right)⋮7\end{cases}}\Rightarrow2a-1\in BC\left(5;7\right)\)
Vì a là số nhỏ nhất có thể => 2a - 1 nhỏ nhất có thể
=> 2a - 1 = BCNN(5;7)
Vì ƯCLN(5;7) = 1
=> BCNN(5;7) = 5.7 = 35
=> 2a - 1 = 35
=> 2a = 36
=> a = 18
Vậy số cần tìm là 18
Tìm số tự nhiên a nhỏ nhất,khác 0,biết rằng
a,a chia heets cho 40 và a cũng chia hết cho 86
b,Khi chia số a cho 3 dư 1,chia 4 dư 2,chia cho 5 dư 3,chia cho 6 dư 4 và chia hết cho 11
c,Khia chia cho số a cho 6 dư 1,chia cho 7 dư 5 và chia cho 8 dư 3
d,Khi chia cho số a cho 120 dư 58,chia cho 135 dư 88
tìm số tự nhiên nhỏ nhất , biết rằng nếu lấy số đó chia cho 10 dư 9, chia 9 dư 8, chia 8 dư 7, chia 7 dư 6, chia 6 dư 5, chia 5 dư 4, chia 4 dư 3, chia 3 dư 2, chia 2 dư 1