Chứng minh rằng: \(5^{9009}\)không phải là số nguyên tố
Cho p \(\ge\)5 là số nguyên tố sao cho 2.p+1 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6 và 2.p2+1 không phải là số nguyên tố.
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Cho p \(\ge\)5 là số nguyên tố sao cho 2.p+1 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6 và 2.p2+1 không phải là số nguyên tố.
Cho p là một số nguyên tố. Chứng minh rằng hai số 8p-1 và 8p+1 không đồng thời là số nguyên tố
Giúp mình nha. Mai mình phải đi học rồi
p nguyên tố => 8p không chia hết cho 3(*)
(8p-1), (8p), (8p+1) là ba số tự nhiên liên tiếp => phải có 1 số chia hết cho 3
mà 8p (*) => (8p-1), (8p+1) phải có 1 số chia hết cho 3=> dpcm
Câu 5. Cho p là một số nguyên tố. Chứng minh rằng hai số 8p - 1 và 8p + 1 không đồng thời là số nguyên tố.( cứu)
tham khảo:
Nếu P=2 => 8P-1=8.2-1=15
8P+1=8.2+1=17 (thỏa mãn)
Nếu P=3 =>8P-1=8.3-1=23
8P+1=8.3+1=25 (thỏa mãn)
Nếu p>3 thì P=3K+1 hoặc 3K+2
+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)
+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)
Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.
Giả sử có 8p-1;8p+1 là SNT
Nếu p = 3 => 8p+1=25 không phải SNT
=> p ⋮/3⋮̸3
=> 8p ⋮/3⋮̸3
Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp
=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)
Chứng minh rằng : A=802_79x80+1601 không phải là số nguyên tố.
bài 5 :
a) Chứng minh rằng : số 111 không phải là số nguyên tố .
b) Cho A = abc + bca + cab. Chứng minh rằng : A chia hết cho 37
a; Vì Ư(111)={1;3;37;111} nên 111 ko phải số nguyên tố
A=abc +bca+cab
A=a x100+bx10+c+b x100+c x10+a +c x100+a x10+b
A=a x111+b x111+c x111
A=111 x(a+b+c)
A=37 x3 x(a+b+c) : hết cho 37
tick nha nhanh nhất nè
mà đây là toán 6 mà
Cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p-1 và p+1 không phải là số chính phương
Chứng minh rằng E = \(80^2-79.80+1601\) không phải là số nguyên tố?
đáp án:
A=802−79.80+1601=80(80−79)+1601=80+1601=1681=412A=802−79.80+1601=80(80−79)+1601=80+1601=1681=412
chia hết cho 41 nên không phải là SNT