Những câu hỏi liên quan
HY
Xem chi tiết
ND
21 tháng 10 2016 lúc 21:36

2n3-n2+5n+6

=n2(2n+1)-2n2+5n+6

=n2(2n+1)-n(2n+1)+6n+6

=> 6n+6 chia hết 2n+1

3(2n+1)+3 chia hết 2n+1

=> 3 chia hết 2n+1

=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3

2n = 0 ; 2 ; -2 ; -4

n = 0 ; 1 ; -1 ; -2

kb vs mik nha

Bình luận (0)
VQ
Xem chi tiết
NT
23 tháng 4 2017 lúc 11:49

A chia hết cho n

mà 4n chia hết cho n

=> 4 chia hết cho n

=> n thuộc Ư(4)={1;-1;2;-2;4;-4}

câu b tương tự nhé

Bình luận (0)
VQ
23 tháng 4 2017 lúc 12:04

chỉ làm tắt vậy thôi hả bạn

Bình luận (0)
NL
Xem chi tiết
DM
21 tháng 12 2016 lúc 19:20

a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)

hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z

=> n= 3,1,4,0,5,-1,8,-4)

c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1

Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)

=> n thuộc (0,-1)

Do n thuộc Z => n=0,-1

d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n

Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)

Bình luận (0)
TA
21 tháng 12 2016 lúc 19:24

a) n-2 thuộc ước của 6

 Ư (6)={+-1;+-2;+-3;+-6}

n-2=1  => n=3

n-2=-1 => n=1

n-2=2 => n=4

n-2=-2 => n=0

n-2=3 => n=5

n-2=-3 => n=-1

n-2=6 => n=8

n-2=-6 => n=-4

b) do 5n chia hết cho n nên 27 phải chia hết cho n 
n thuộc N nên n =1,3,9,27 
và 5n< hoặc =27 
suy ra n=1 hoặc 3 
n=1 thỏa mãn 
n=3 thỏa mãn 
suy ra 2 nghiệm

c) 4n-5 chia hết cho 2n-1

 P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1) 

P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3 

* 2n - 1 = -1 <=> n = 0 

* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên) 

* 2n - 1 = 1 <=> n = 1 

* 2n - 1 = 3 <=> n = 2 

Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2 

d) 3n+1 chia hết cho 11-2n

 + 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n 
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n. 
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35. 
* Với 11-2n=-1 => n=6 
* Với 11-2n=1 => n=5 
* Với 11-2n=-5 => n=8 
* Với 11-2n=5 => n=3 
* Với 11-2n=-7 =>n=9 
* Với 11-2n=7 => n=2 
* Với 11-2n=-35 => n=23 
* Với 11-2n=35 => n=-12 
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n

Bình luận (0)
OD
25 tháng 10 2017 lúc 21:49

các bn làm đúng rồi đó

Bình luận (0)
HN
Xem chi tiết
AH
2 tháng 1 2024 lúc 16:52

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

Bình luận (0)
AH
2 tháng 1 2024 lúc 16:53

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

Bình luận (0)
AH
2 tháng 1 2024 lúc 16:54

3/

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

Bình luận (0)
TD
Xem chi tiết
NL
22 tháng 7 2015 lúc 16:04

a) Ta có : 3n+6 chia hết cho 3n+6

=>2(3n+6) chia hết cho 3n+6

=> 6n+3-6n+12 chia hết cho 3n+6

 -9 chia hết cho 3n+6

=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}

3n={-5,-7,-3,-9,3,-15} 

n={-1,-3,1,-5}

Bình luận (0)
DG
22 tháng 7 2015 lúc 16:04

a) n không có giá trị

b) n = 2

c) n= 6 ;8

d)n khong có giá trị

e) n= 3

Bình luận (0)
NT
11 tháng 8 2016 lúc 18:54

tìm số nguyên n biết n-4 chia hết cho n-1

Bình luận (0)
TK
Xem chi tiết
HM
23 tháng 2 2017 lúc 20:08

Ta có : 5n+3=5n+35-35+3

                  =5(n+7)-32

Để 5n+3 \(⋮\)n+7 thì 5(n+7)-32\(⋮\)n+7 

                      \(\Rightarrow\)        32 \(⋮\) n+7

                      \(\Rightarrow\)        n+7 \(\in\)Ư(32)

                      \(\Rightarrow\)        n+7\(\in\)(32,-32,1,-1,16,-16,2,-2,8,-8,4,-4)

Khi đó ta có bảng sau : 

n+732-321-116-162-28-84-4
n25-39-6-89-23-5-91-15-3-11
KLChọn

Chọn

ChọnChọnChọnChọnChọnChọnChọnChọnChọnChọn

Vậy n \(\in\)(25,-39,-6,-8,9,-23,-5,-59,1,-15,-3,-11)

Bình luận (0)
LT
23 tháng 2 2017 lúc 20:13

5n + 3 chia hết cho n + 7

=>( 5n + 35 ) - 32 chia hết cho n + 7

Mà : 5n + 35 = 5 ( n + 7 ) nên 5n + 35 chia hết cho n + 7 . Vậy để 5n + 3 chia hết cho n + 7 thì 32 chia hết cho n + 7=> n + 7 thuộc Ước của 32

Ta lập bảng : 

n + 7 32168421-32-16-8-4-2-1
n2591-3-5-6-39-23-15-11-9-8


 

Bình luận (0)
NU
23 tháng 2 2017 lúc 20:13

Theo đề bài ta có : 5n + 3  chia hết cho n + 7 

5n + 3 = 5n + 35 - 32 mà 5n + 35 chia hết cho n + 7 =) 35 chia hết cho n + 7.

(*) n + 7 = 1                     (*) n + 7 = 5               (*) n + 7 = 7                    (*) n + 7 = 35

         n = -6                                n = -2                        n = 0                             n = 32

Còn trường hợp âm nữa nhé ! mong bạn k cho mình ok!

Bình luận (0)
BF
Xem chi tiết
DH
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Bình luận (0)
LK
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bình luận (0)
TD
Xem chi tiết
ST
8 tháng 8 2018 lúc 10:37

a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)

b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp

=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6

c, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)

=>a^3+b^3+c^3=3abc

Bình luận (0)
BH
Xem chi tiết
H24
16 tháng 2 2019 lúc 14:01

4n+3 chia hết cho 3n-2 

<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2

<=>17 chia hết cho 3n-2

<=>3n-2 E {-1;1;17;-17}

<=> 3n E {1;3;19;-15} loại các TH n ko nguyên

=>n  E {1;-5}. Vậy.....

Bình luận (0)
H24
16 tháng 2 2019 lúc 14:09

2n+3 chia hết cho n-1

<=> 2n+3-2(n-1) chia hết cho n-1

<=>5 chia hết cho n-1

<=> n-1 E {-1;1;5;-5}

<=> n E {0;2;6;-4}

bài nào chứ mấy bài này dài ngoằng =((

Bình luận (0)

Vì vai trò m, n như nhau, giả sử m≥n

 Xét các trường hợp:

Nếu m=n thì 2m+1⋮m⇒m=n=1 Nếu m>n, đặt 2n+1=pm (p∈N∗)

             Vì 2m>2n⇒2m>2n+1=pm⇒p<2⇒p=1

           Khi p=1 thì: 2n+1=m⇒2(2n+1)+1=2m+1⋮n⇒4n+3⋮n⇒3⋮n⇒n=1;3

      Với n=1 thì m=3

      Với n=3 thì m=7

 Vậy (m;n)={(1;1); (3;1); (7;3)}

Bình luận (0)