Những câu hỏi liên quan
HH
Xem chi tiết
DN
3 tháng 11 2016 lúc 21:35

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Bình luận (0)
NQ
25 tháng 2 2017 lúc 20:50

Không tìm được giá trị n.

Bình luận (0)
VA
26 tháng 2 2017 lúc 8:37

k có giá trị của n thỏa mãn để 2016 \(+\) n2 la so chính phương

Bình luận (0)
LV
Xem chi tiết
NT
Xem chi tiết
NQ
19 tháng 12 2015 lúc 19:13

Giả sử a2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 (A thuộc Z) <=> a2 - n2 = 2006

<=> (A - n)(a + n) = 2006 (*)

Thấy a,n khác tính chẵn lẻ thì vế trái của (*) là số lẻ nên không thõa mãn (*)

Nếu a,n cùng tính chẵn hoặc lẻ thì (A - n) chia hết cho 2 và (a + n) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thõa mãn (*)

Vậy không tồn tại n để n2 + 2006 là số chính phương 

Bình luận (0)
TT
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
XO
14 tháng 12 2019 lúc 15:51

a) Gọi số chính phương là tổng của n2 + 105 là a2 \(\left(a\inℕ^∗\right)\)

Để n2 + 105 = a2

=> a2 - n2 = 105 (a > n vì a2 - n2 > 0 với \(a;n\inℕ^∗\))

=> (a2 + a.n) - (n.a + n2) = 105

=> a(a + n) - n(a + n) = 105

=> (a + n)(a - n) = 105

Với \(a;n\inℕ^∗;a>n\Rightarrow\hept{\begin{cases}a+n\inℕ^∗\\a-n\inℕ^∗\end{cases};\left(a+n>a-n\right)}\)

Khi đó có 105 = 21 x 5 = 7 x 15 = 3 x 35 = 1.105

Lập bảng xét 3 trường hợp 

a + n105153521
a - n1735
n52(tm)4(tm)16(tm)8(tm)

Vậy \(n\in\left\{52;4;16;8\right\}\)

b) Gọi số chính phương là tổng của n2 + 2006 là a2 \(\left(a\inℕ^∗\right)\)

Để n2 + 105 = a2

=> a2 - n2 = 2006 (a > n vì a2 - n2 > 0 với \(a;n\inℕ^∗\))

=> (a2 + a.n) - (a.n + n2) = 2006

=> a(a + n) - n(a + n) = 2006

=> (a + n)(a - n) = 2006

Với \(a;n\inℕ^∗;a>n\Rightarrow\hept{\begin{cases}a+n\inℕ^∗\\a-n\inℕ^∗\end{cases};\left(a+n>a-n\right)}\)

Khi đó có : 2006 = 1003 x 2 = 2006.1 = 118.17 = 59.34 

Lập bảng xét 4 trường hợp : 

a + n1003200659118
a - n213417
n500,5(loại)1002,5(loại)12,5(loại)50,5(Loại)

Vậy \(n\in\varnothing\)

Bình luận (0)
 Khách vãng lai đã xóa