Tìm x thuộc Z biết
2.(x-1)+4.x.(x-1)=0x.(1+2x)-3.(2x+1)=0Tìm x thuộc Z biết
2.(x-1)+4.x.(x-1)=0x.(1+2x)-3.(2x+1)á hỏi bài nhá chính
B1: tìm x;
a, (x-3)^2+(4+x)(4-x)=10
b,(x+4)^2+(1+x)(1-x)=7
c,(x-4)^2-(x+2)(x-2)=6
d,4(x-3)^2-(2x+1)(2x-1)=10
e,25(x+3)^2+(1+5x)(1-5x)=8
g,-4(x-1)^2+(2x+1)(2x-1)=-3
B2:chứng minh rằng:
1, a^2(a+1)+2a(a+1) chia hết cho 6 với mọi a thuộc Z
2, x^2+2x +2 >0 với mọi x thuộc Z
3,x^2-x +1>0 với mọi x thuộc Z
4,-x^2+4x -5<0 với mọi x thuộc Z
mk cần gấp vì chiều 2h 30 mk phải đi học
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
bài 1:tìm x thuộc Z
a,(2x-6).(x+2)= 0
b,(x^2+7).(x^2-25)=0
c,|2x-1|=4
d,(x^2-9).(x^2-49)=0
bài 2: tìm x,y thuộc Z
a,(x-3).y=15
b,x.(2y-1)=18
c,(3x-1).(2y+3)=28
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
suy ra 2x-6 =0 hoặc x+2=0
sau đó bạn giải từng trường hợp
1c) |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}}\)
=> \(\orbr{\begin{cases}2x=5\\2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
vì x \(\in\)Z => ko có giá trị x
d) (x2 - 9)(x2 - 49) = 0
=> \(\orbr{\begin{cases}x^2-9=0\\x^2-49=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=9\\x^2=49\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm3\\x=\pm7\end{cases}}\)
tìm x biết
a) (5x-1)(2x-1/3)=0
b) (x^2+1)(x-4)=0
c) 2x^2 -1/3x=0
d) (4/5)^5.x=(4/5)^7
e)Tìm x thuộc z để A=x+5/x-2 có giá trị nguyên
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Tìm x,y thuộc Z biết
a,(x+3)(2x-7)=15
b,(2x-1)(4y+5)=5
c,(x+1)(x+2)(x+3)(x+4)=0
a) (x+3)(2x-7)=15
=> x=-4 hoặc 9/2
c)(x+1)(x+2)(x+3)(x+4)=0
=> x=-4, x=-3, x=-2, x=-1
Nguyễn Thanh Huyền các em có biết chị là ai không? nếu biết chị thì hãy kết bạn với chị nha
\(\left(x+3\right)\left(2x-7\right)=15\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=15\\2x-7=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=15\Rightarrow x=12\\x=\frac{\left(15+7\right)}{2}\Rightarrow x=11\end{cases}}\)
Vậy x = { 12 ; 11}
\(\left(2x-1\right)\left(4y+5\right)=5\)
\(\Rightarrow2x-1=5\) hoặc \(4y+5=5\)
Với \(2x-1=5\Rightarrow x=\frac{\left(5+1\right)}{2}\Rightarrow x=3\)
Với \(4y+5=5\Rightarrow y=\frac{\left(5-5\right)}{4}=0\)
Vậy x = 3 và y = 0
tìm x thuộc z
1)(-3x+2)-(5-3x)=-3
2) 3+x-(3x-1)=6-2x
3) (x-5).(3x+4)=0
4) 7x.(2x-1)=0
5) (3x-1).2x=0
giúp mik với mai mik đi học rùi :((
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3x+3x=-3+5-2\)
\(\Rightarrow0x=0\Rightarrow x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow3+x-3x+1=6-2x\)
\(\Rightarrow x-3x+2x=6-1-3\)
\(\Rightarrow0x=2\left(loại\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)
\(7x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(\left(3x-1\right)2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)
khó hiểu quá
bạn ghi bằng số luôn đừng ghi phần
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3=-3\)
\(\forall x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow2=6\left(vl\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
\(7x\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
\(\left(3x-1\right)2x=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}\)
ai giúp e với
tìm x :
3x ( x + 1 ) - 2x ( x + 2 ) = - 1 - x
4x ( x - 2019 ) - x + 2019 = 0
( x - 4 )^2 - 36 = 0
x^2 + 8x + 16 = 0
x ( x + 6 ) - 7x - 42 = 0
25x^2 - 9 = 0
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...