Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tỉ lệ thức (a/b)=(c/a)CMR [(a-b)/(c-d)]^2008=(a^2008+b^2008)/(c^2008+d^2008)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^{2008}=\left(\frac{b}{d}\right)^{2008}=\left(\frac{a-b}{c-d}\right)^{2008}=\frac{a^{2008}}{c^{2008}}=\frac{b^{2008}}{d^{2008}}=\frac{a^{2008}+b^{2008}}{c^{2008}+d^{2008}}\)
\(\Rightarrow\left(\frac{a-b}{c-d}\right)^{2008}=\frac{a^{2008}+b^{2008}}{c^{2008}+d^{2008}}\left(đpcm\right)\)
Cho tỉ lệ thức (a/b)=(c/a)CMR [(a-b)/(c-d)]^2008=(a^2008+b^2008)/(c^2008+d^2008)
cho 3 số a,b,c # 0 thỏa mãn 2 điều kiện sau :a+b+c=2008 và 1/a + 1/b + 1/c = 1/2008. chứng tỏ rằng một trong 3 số bằng 2008
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
Trần Thị Loan : tại sao a+b+c = 2008 và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008};a+b+c=2008\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ca+ac}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)=abc\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu \(a+b=0\Rightarrow c=2008\)
\(b+c=0\Rightarrow a=2008\)
\(c+a=0\Rightarrow b=2008\)
Vậy 1 trong ba số bằng 2008
cho a, b, c là ba số thỏa mãn điều kiện: a^2008+b^2008+c^2008=1 và a^2009+b^2009+c^2009=1
tính tổng a^2007+b^2008+c^2009
cho 3 số a,b,c # 0 thỏa mãn 2 điều kiện sau :a+b+c=2008 và 1/a + 1/b + 1/c = 1/2008. chứng tỏ rằng một trong 3 số bằng 2008
cho \(a^3+b^3+c^3=3abc\) voi a,b,ckhac 0 va \(a+b+c\ne0\)
Tinh P=\(\left(2008+\dfrac{a}{b}\right)\left(2008+\dfrac{b}{c}\right)\left(2008+\dfrac{c}{a}\right)\)
\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)
=>P=20093
cho a =2008/2009;b=2009/2008;c=1/2009;d=2007/2008.tính a-b+c+d
\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\frac{1003}{1004}\)
ai k mình mình k lại,ok
Câu 19. Cho ${A}=\dfrac{2008^{2008}+1}{2008^{2009}+1}$; ${B}=\dfrac{2008^{2007}+1}{2008^{2008}+1}$. So sánh $A$ và $B$.
cho biểu thức A=(a^2012+b^2012+c^2012)-(a^2008+b^2008+c^2008) , với a,b,c là các số nguyên dương . CM A chia hết cho 30
\(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
Chứng minh A chia hết cho 2 : Nếu a,b,c là các số lẻ thì a4-1 , b4-1 , c4-1 là các số chẵn=> A là số chẵn => A chia hết cho 2
Nếu a,b,c là các số chẵn thì dễ thấy A là số chẵn => A chia hết cho 2
Vậy A chia hết cho 2
Chứng minh A chia hết cho 5 :Xét số tự nhiên n không chia hết cho 5 , chứng minh n4-1 chia hết cho 5
Ta có : \(n=5k\pm1,n=5k\pm2\)với k là số tự nhiên
\(n^2\)có một trong hai dạng \(n^2=5k+1\)hoặc \(n^2=5k+4\)
\(n^4\)có dạng duy nhất : \(n^4=5k+1\Rightarrow n^4-1⋮5\)
Áp dụng với n = a,b,c được A chia hết cho 5
Chứng minh A chia hết cho 3Xét với n là số chính phương thì n2 chia 3 dư 0 hoặc 1
Do đó, nếu n2 chia 3 dư 0 thì dễ thấy A chia hết cho 3 với n = a,b,c
Nếu n2 chia 3 dư 1 thì n4 chia 3 dư 1 => n4-1 chia hết cho 3 => A chia hết cho 3 với n = a,b,c
Vậy n chia hết cho 2,3,5 mà (2,3,5) = 1 => A chia hết cho 30