Những câu hỏi liên quan
H24
Xem chi tiết
NT
28 tháng 8 2023 lúc 10:03

\(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)

\(M=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{28}\left(1+3+3^2\right)\)

\(M=3.13+3^4.13...+3^{28}.13\)

\(M=13.\left(3+3^4...+3^{28}\right)⋮13\)

\(\Rightarrow dpcm\)

Bình luận (0)
KH
Xem chi tiết
NT
10 tháng 4 2017 lúc 21:51

M=1+3+3^2+3^3+^3+...+3^118+3^119

  =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

 =13+3^3(1+3+3^2)+...+3^117(1+3+3^2)

 =13+3^3.13+..+3^117.13

 =13(1+3^3+...+3^117) chia hết cho 13

Vậy Mchia hết cho 13

Bình luận (0)
NC
10 tháng 4 2017 lúc 21:42

ai chơi truy kích thì kết bạn vs mình nha 

rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván

Bình luận (0)
NC
10 tháng 4 2017 lúc 21:44

ai chơi truy kích 

kb với mình mình k cho mình chưa có bạn

Bình luận (0)
BO
Xem chi tiết
TL
23 tháng 12 2015 lúc 19:29

dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay

se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)

=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13 

vậy M chia hết cho 13

tick cho mình nhé!

Bình luận (0)
KZ
24 tháng 12 2020 lúc 21:36
M= 1+3+3^2+3^3+...+3^98+3^99+3^100 M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100) M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2) M= 13+3^3.13+...+3^98.13 M= 13(3^3+...+3^98) Do 13 chia hết cho 13 nên M chia hết cho 13
Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
UN
15 tháng 8 2021 lúc 17:05

M=1+3+3^2+3^3+...+3^98+3^99+3^100

M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

M=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy M chia hết cho 13

HT

Bình luận (0)
 Khách vãng lai đã xóa
HT
15 tháng 8 2021 lúc 17:15

*Sửa đề*

M = 1 + 3 + 32  +....+ 3100

M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)

M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)

M = 13 . 1 + 13 . 33+ ...... + 13 . 398

M = 13 . ( 1 + 33 +....+ 398)

=> M chia hết cho 13

Bình luận (0)
 Khách vãng lai đã xóa
N2
Xem chi tiết
NX
Xem chi tiết
TA
Xem chi tiết
TT
1 tháng 10 2017 lúc 12:53

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Bình luận (0)
TP
1 tháng 10 2017 lúc 20:46

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

Bình luận (0)
NL
Xem chi tiết
MP
21 tháng 9 2017 lúc 6:27

* ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)\(100\) số hạng

\(100⋮4\)\(100⋮̸3\)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮4\) )

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+2^{97}\left(1+3+3^2+3^3\right)\)

\(=3\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+2^{97}\left(1+3+9+27\right)\)

\(=3.40+3^5.40+...+3^{97}.40=40.\left(3+3^5+...+3^{97}\right)⋮40;10;4\)

vậy \(C\) chia hết cho \(40;10và4\) (1)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=3^1+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮̸3\) )

\(=3+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+2^{98}\left(1+3+3^2\right)\)

\(=3+3^2\left(1+3+9\right)+3^5\left(1+3+9\right)+...+2^{98}\left(1+3+9\right)\)

\(=3+3^2.13+3^5.13+...+3^{98}.13=3+13.\left(3^2+3^5+...+3^{98}\right)\)

ta có : \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\) nhưng \(3⋮̸13\)

\(\Rightarrow\) \(C\) không chia hết cho \(13\)\(3< 13\) \(\Rightarrow\) \(3\) là số dư khi chia \(C\) cho \(13\) (2)

từ (1) và (2) \(\Rightarrow\) (ĐPCM)

Bình luận (0)
GB
Xem chi tiết