tìm đa thức p(x) biết p(x) khi chia cho x-2 dư 2;chia cho x+2 dư -2; chia cho x^2-1 được thương là x và còn dư
1) Đa thức P(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Phần dư của đa thức P(x) khi chia cho (x-2)(x-3) là?
2) tÌM ĐA THỨC P(X) biết p(x) chia x-1 dư -2, P(x) chia cho x+1 dư 3, P(x) chia x2 -1 được thương là 2x và còn dư
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Cho đa thức P(x) biết: P(x) chia cho x – 1 dư 5; x – 2 dư 7; x – 3 dư 10; x + 2 dư – 4. Tìm đa thức dư R(x) khi chia đa thức P(x) cho (x – 1)(x – 2)(x – 3)(x + 2)
Giúp em với thầy cô ơi!!!
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
biết rằng đa thức f(x) khi chia cho x-2 có số dư 6067, khi chia cho x+3 có số dư -4043. Tìm đa thức dư khi f(x) chia cho x2+x-6
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
khi chia đa thức T(x) cho đa thức 2x2 - x - 3 được thương là 3x - 2 và còn dư. Tìm đa thức dư, biết rằng khi chia T(x) cho (2x - 3) và (x - 2) thì còn dư lần lượt là 12 và -14
tìm đa thức f(x)=x^2+ax+b, biết khi chia f(x) cho x+1 dư 6, khi chia cho x-2 dư 3
Đa thức p(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Tìm phần dư của đa thức P(x) khi chia cho (x-2)(x-3)
Một đa thức khi chia cho x+1 thì dư 2, chia cho x+2 thì dư 3. Tìm số dư khi đa thức đó chia cho (x+1)(x+2)
Biết rằng đa thức P(x) chia x - 1 dư 3; chia x - 2 dư 4. Tìm dư khi chia P(x) cho x2 - 3x + 2
Ta có:
\(P\left(x\right)=\left(x-1\right)P\left(x\right)+3\)(1)
\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+4\)(2)
\(P\left(x\right)=\left(x-1\right)\left(x-2\right)H\left(x\right)+ax+b\)(3) \(\left[x^2-3x+2=\left(x-1\right)\left(x+2\right)\right]\)
(đa thức dư là ax + b vì đa thức bị chia có bậc 2 thì đa thức đư có bậc 1)
Thay x = 1 vào (1), được P(1) = 3
Thay x = 1 vào (3), được \(a+b=3\) (4)
Thay x = 2 vào (2), có P(2) = 4
Thay x = 2 vào (2), có 2a + b = 4 (5)
Từ (4) và (5), ta tính được a = 1, b = 2
Vậy đa thức dư khi chia P(x) cho \(x^2-3x+2\)là \(ax+b=x+2\)