\(A=\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)
Giải rõ nhé các bạn
\(C=\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+....+\frac{9997}{9999}\)
Tìm C giúp mình nha! Các bạn giải theo cách cấp 1 nhé!
giải nhanh giúp mình câu dưới đây nhé thứ 3 ngày 22/8 mình phải đi học rồi
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+.....+\frac{9997}{9999}\)
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+...+\frac{9997}{9999}=1-\frac{2}{3}+1-\frac{2}{15}+1-\frac{2}{35}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
thank you bạn nhé mình sẽ k cho bạn
nhưng mà sao bạn biết là có 50 số 1
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
2A=\(\frac{1}{3}-\frac{1}{101}\)
2A=\(\frac{98}{303}\)
A=\(\frac{98}{303}.\frac{1}{2}\)
A=\(\frac{49}{303}\)
Chúc bạn học tốt!
chứng minh rằng\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \)\(\frac{1}{2}\)
CÁC BẠN GIẢI RÕ GIÙM MK NHÉ, AI NHANH NHÂT VÀ CHÍNH XÁC NHẤT MK NHẤT ĐỊNH SẼ K CHO !!!
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
cac ban cho mk biet tai sao lai co phan so \(\frac{1}{30};\frac{1}{45}\)vay ???
A = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+.....+\frac{1}{9999}\)
A = ?
\(\Rightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{99.101}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{88}{303}\)
\(\Rightarrow A=\frac{44}{303}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(\Rightarrow2A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
=> A = 98/203 : 2 = 49/303
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{99\cdot101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}\)
\(A=\frac{98}{303}\)
A=\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
tính nhanh
nhanh gấp mọi người ơi mai phải nộp rùi T_T
ai giải Đ và giải đầy đủ sẽ đc tick
A=1/1*3+1/3*5+1/5*7+.....+1/99*101
A=1/3*(1-1/3+1/3-1/5+1/5-1/7+.......+1/99-1/101)
A=1/3*(1-1/101)
A=1/3*100/101
A=300/301
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Tính nhanh: \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
A=1/3.5+1/5.7+1/7.9+...+1/99.101
2A= 2/3.5+2/5.7+2/7.9+...+2/99.101
2A= 1/3-1/5+1/5-1/7-1/7+1/7-1/9+...+1/99-1/101
2A=1/3-1/101=98/303
A=(98/303)/2=49/303
A=1/3.5 + 1/5.7 + 1/7.9 +...+ 1/99.101
=1/2.[(1/3-1/5) + (1/5-1/7) + ... + 1/99-1/101)]
=1/2.(1/3-1/101)
=49/303
Tính nhanh: \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=1/3.5+1/5.7+1/7.9+…+1/99.101\)
A.2=2/3.5+2/5.7+2/7.9+…+2/99.101
A.2=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101
Vậy
A.2=1/3-1/101=98/303
A=98/303/2=49/303
Đúng không
A = 1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999
= 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + ... + 1/99x101
A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + ... + 2/99x101
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/99 - 1/101
= 1/3 - 1/101 = 98/303
Vậy A = 98/303 : 2 = 49/303
Tính nhanh
\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}........\frac{9999}{10000}\)
\(C=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right).\left(1-\frac{1}{1000}\right)\)
CÁC BẠN GIẢI RA CHO MÌNH NHÉ