Những câu hỏi liên quan
ND
Xem chi tiết
NH
Xem chi tiết
TH
14 tháng 3 2021 lúc 19:16

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

Bình luận (0)
NL
Xem chi tiết
H24
3 tháng 11 2019 lúc 10:50

\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)

Rồi làm nốt.

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 11 2019 lúc 13:00

Sửa lại tí: 

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!

Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
NA
3 tháng 11 2019 lúc 20:50

Dùng bunhiacopxki là xong nhé bạn 

\(\left(\left(2a\right)^2+\left(\sqrt{6}b\right)^2+\left(\sqrt{3}c\right)^2\right)\left(1^2+\left(\frac{\sqrt{6}}{3}\right)^2+\left(\frac{2\sqrt{3}}{3}\right)^2\right)\ge\left(2a+2b+2c\right)^2=36\)

\(\Leftrightarrow\left(4a^2+6b^2+3c^2\right)\left(1+\frac{2}{3}+\frac{4}{3}\right)\ge36\)

\(\Leftrightarrow4a^2+6b^2+3c^2\ge12\)

Dấu bằng xảy ra \(\Leftrightarrow...tựghinha\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=1\\c=\frac{1}{2}\end{cases}}\)

Đầu tiên bạn phải đoán rằng ta sẽ dùng bunhiacopxki để giải vì vế trái có a^2,b^2,c^2 nên dùng bunhia ta sẽ kết hợp với các số để triệt tiêu về dạng m(a+b+c) , thật ra m tùy ý theo bạn chọn để phù hợp với bộ số đằng sau, mình chọn ở đây m=2 do có 4a^2 nên mình chọn phần ứng với nó là 1 để có 2a tiếp tục như vậy để có 2b,2c rồi sau đó giải đk dấu bằng xảy ra là xong 

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
HQ
6 tháng 4 2020 lúc 15:05

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 4 2020 lúc 16:41

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 4 2020 lúc 12:32

Ta có :

(2a+3)(a-3)2 \(\ge\) 0 <=> (2a+3)(a2 -6a+9) \(\ge\) 0

<=> 2a3 - 12a2 +18a +3a3 -18a+7 <=> 2a3 - 9a2 + 27 \(\ge\) 0

Dấu " = " xảy ra <=> x=3

Tương tự ta có : 2b3 -9b2 +27 \(\ge\) 0; 2c3-9c2+27\(\ge\) 0

Mà a2 +b2 + c=27 (gt)

Do đó : 2(a3+b3+c3)-9(a2+b2+c2)+27.3 \(\ge\) 0

<=> 2( a3 + b3 +c3)\(\ge\) 6.27 <=> a3+b3+c3 \(\ge\) 81

Dấu "=" xảy ra <=> a=b=c=3

Vậy GTNN của S= a3+b3+c3 là 81

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
BL
Xem chi tiết
NB
20 tháng 12 2022 lúc 22:12

Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết