X/4=y/7 và x-2y=90
\(\frac{2x-y}{3}=\frac{2y-x}{5}=\frac{2z-y}{7}\)và x + y + z = 90, tìm x, y, z
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-y}{3}=\frac{2y-x}{5}=\frac{2z-y}{7}=\frac{2x-y+2y-x+2z-y}{3+5+7}=\frac{x+y+z}{15}=\frac{90}{15}=6\)
Suy ra:
\(\frac{2x-y}{3}=6\Rightarrow2x-y=18\Rightarrow y=2x-18\)
\(\frac{2y-x}{5}=6\Rightarrow2y-x=30\)
thay y=2x-18 vào 2y-x=30 ta được:
2.(2x-18)-x=30
=>4x-36-x=30
=>3x=66
=>x=22
=>y=2.22-18=44-18=26
thay x=22;y=26 vào x+y+z=90 ta được:
22+26+z=90
=>z=42
Vậy x=22;y=26;z=42
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
tìm x,y biết
x/4=y/6 và x+y = 90
x/5=y/2 và 2x-2y=44
2x=3y và x+y =10
hai gọc so le trong là 2 góc ở vị trí so le trong
2 góc này đc tạo bởi 2 đường thẳng song song và đường thẳng thứ 3 cắt 2 đường thẳng đó
như thế này nè
cái tròn đó là vị trí 2 góc so le trong
nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
1)x/2=y/3=z/-4 và 3x-2z=99
2)x/2=y/3=z/6 và 4y-3x=66
3)x/4=y/3 và 3y=5z và x-y-z=100
4)x/5=y/3=z/2 và 2x-3y=100
5)x/5=y/2 và xy=90
6)x/4=y/5 và xy=20
7)x/2=y=2/3 và 3x-2y+4z=16
8)x=y/6=z/3 và 2x-3y+4z=-24
tìm x,y,z
a)x/y = 4/9 và 3x-2y=12
b)y/4=x/-3 và x-y=7
c)x=-2y và x-y=-3
d)x/2=y/5=z/7 và 2x + y - z =2
a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)
=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)
b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)
=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)
c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)
=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)
d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)
=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)
Tìm x,y,z biết:
\(\frac{2x-y}{3}=\frac{2y-z}{5}=\frac{2z-x}{7}\) và x+y+z= 90
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-y}{3}=\frac{2y-z}{5}=\frac{2z-x}{7}=\frac{2x-y+2y-z+2z-x}{3+5+7}=\frac{x+y+z}{15}=\frac{90}{15}=6\)
\(\cdot\frac{2x-y}{3}=6\Rightarrow2x-y=18\Rightarrow2x=18+y\)
\(\frac{2y-z}{5}=6\Rightarrow2y-z=30\Rightarrow2y=z+30\)
\(\frac{2z-x}{7}=6\Rightarrow2z-x=42\Rightarrow2z=x+42\)
Xong ko biết làm nữa
1
a, x/20 = y/9 = z/6 và x - 20/y + 4 =13
b,x/3 = y/4 : y/5 = 2/7 và x - y - z = 46
c,x/2 = 2y/5 = 42/7 và 3x . 5y . 7z = 123
d,x/2 = 2y/3 =32/4 và x . y .z -108
2
a, a/4 = b/6 ; b/5 =c/8 và 5k -3b =-536
b, a/7 = b/6 ;b/5= c/8 và a -2b + c = 46
c, 5 . a =8.b = 3.c và a-2b =c = 24
d, a + 3/5 = b -2/3 = c - 1/7 và a+b+c =24
e,a/2 = b/3 = c/4 và a^2 + 3 . b^2 - 2 . c^2 = -16
Tìm các số hữu tỉ x,y,z:
5x=2y;2x=3z và xy=90
x/2=y/3;y/4=z/5 và x^2-y^2=-20
Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
câu trả lời rất dễ : do la mot so tu 0 den 100000000000000000000000000000000000000000000
Đa thức (4 x 2 y - z )+ (7 y z - 2y )được phân tích thành nhân tử là
A(2y+z)(4x+7y)
B(2y + z) (4 x - 7 y)
C2y - z)( 4 x - 7 y)