Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
NU
6 tháng 12 2023 lúc 23:07

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

Bình luận (0)
Xem chi tiết
NM
30 tháng 12 2019 lúc 15:54

Tìm min :

Ta có : \(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)

\(\Leftrightarrow A\le8\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
30 tháng 12 2019 lúc 15:56

Tìm max

\(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)

\(\Leftrightarrow A\ge\frac{8}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
30 tháng 12 2019 lúc 15:59

Há miệng ra và nói: ''PHỞ SÁNG"

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BH
6 tháng 12 2017 lúc 10:07

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

Bình luận (0)
KN
3 tháng 10 2020 lúc 15:30

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

Bình luận (0)
 Khách vãng lai đã xóa

oo

Bình luận (0)
TT
Xem chi tiết
DH
14 tháng 9 2018 lúc 15:57

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

Bình luận (0)
TT
Xem chi tiết
TB
Xem chi tiết
H24
23 tháng 2 2020 lúc 20:46

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 2 2020 lúc 20:49

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

Bình luận (0)
 Khách vãng lai đã xóa
KT
23 tháng 2 2020 lúc 22:37

\(1+xy=2\left(x^2+y^2\right)\ge4xy\)    =>  \(xy\le\frac{1}{3}\)

\(1+xy=2\left(x^2+y^2\right)=2\left(x+y\right)^2-4xy\ge-4xy\) =>   \(xy\ge-\frac{1}{5}\)

=>  \(-\frac{1}{5}\le xy\le\frac{1}{3}\)

\(P=7.\left[\left(x^2+y^2\right)^2-2x^2y^2\right]+4x^2y^2\)

\(=7.\left(\frac{1+xy}{2}\right)^2-10x^2y^2=\frac{-33x^2y^2+14xy+7}{4}\)

đặt  \(t=xy\)

\(P=\frac{-33t^2+14t+7}{4}\)

........................

\(P_{min}=\frac{18}{25}\) tại  \(xy=-\frac{1}{5}\)

\(P_{max}=\frac{70}{33}\)  tại  \(xy=\frac{7}{33}\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NM
5 tháng 8 2016 lúc 23:46

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

Bình luận (0)
NM
5 tháng 8 2016 lúc 23:51

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

Bình luận (0)
NM
6 tháng 8 2016 lúc 0:08

\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2

\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))

=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0

Bình luận (0)