So sánh : n/ 2n+1 và 3n+1/ 6n+3
SO SÁNH:
n/2n+1 và 3n+1/ 6n+3
Ta có: \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)
Vì 3n < 3n + 1 nên \(\frac{3n}{6n+3}<\frac{3n+1}{6n+3}\)
Vậy \(\frac{n}{2n+1}<\frac{3n+1}{6n+3}\)
Ta có:
n/2n + 1 = 3n/6n + 3
3n/6n + 3 < 3n + 1/6n + 3
=>n/2n + 1 <3n + 1/6n + 3
Thanks!
rút gọn 3n+1/6n+3=1/2
quy đồng
n/2n+1=2n/4n+2
1/2=2n+1/4n+2
so sánh thì vế trái nhỏ hơn
so sánh
n/2n+1 và 3n+1/6n+2
3n/3x 2n+3 =n/2n+1
n/2n+1=3n/3x2n+3=3n/6n+3<3n/6n+2
n/2n+1<3n+1/6n+2
So sánh : a)n/n+1 và n+1/n+2 b) n/n+3 và n-1/n+4 c) n/2n+1 và 3n+1/6n+3
cho tớ l i k e trước nhé rồi tớ sẽ trả lời
Ta có: \(\frac{n}{n+1}=\frac{n\times n+2}{n+1\times n+2}\)
\(\frac{n+1}{n+2}=\frac{n+1\times n+1}{n+2\times n+1}=\frac{n\times2}{n\times3}\)
=> n + 1/ n + 2 > n/n+1
a, n/n+1 va n+1/n+2
Có n/n+1 + 1/n+1=1
n+1/n+2 + 1/n+2 = 1
Vì 1/n+1>1/n+2 nên n/n+1<n/n+2 ( Bài này so sanh theo phần bù đơn vị)
c, n/2n+1 va 3n+1/6n+3
Có n/2n+1 = 3n/3.(2n+1) = 3n/6n+3
Vì 3n/6n+3 < 3n+1/6n+3 nên n/2n+1<3n+1/6n+3
So sánh:
P=n/2n-1
Q=3n+1/6n+3
có Q=3n+1/6n+3
=3n/(6n+3)+1/(6n+3)
=3n/3.(2n+1)+1/6n+3
=n/3n+1+1/6n+3
A=n/2n+1
Và B=3n+1/6n+3 (với n thuộc tập số tự nhiên)
So sánh A và B
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B
So sánh : A = n / 2n + 1; B = 3n + 1 / 6n + 3 với n thuộc N
A = n/2n+1 = 3n / 6n+3 < 3n+1/6n+3 = B
=> A < B
Với n thuộc N số sánh
a: n/ 2n+3 và n+2/2n+1
b: n/ 3n+1 và 2n/6n+1
a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2
= n + 2 / 2n + 5
Mà n + 2 / 2n + 5 < n + 2 / 2n + 1
=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1
Vậy n / 2n + 3 < n + 2 / 2n + 1
b) Ta có : n / 3n + 1 = 2n / 6n + 2
Mà 2n / 6n + 2 < 2n / 6n + 1
Vậy n / 3n + 1 < 2n / 6n + 1
So sánh 2 phân số sau P=n/2n+1 và Q=3n+1/6n+3.với n là số tự nhiên
\(2P=\frac{2n}{2n+1}=\frac{2n+1-1}{2n+1}=1-\frac{1}{2n+1}.\)
\(2Q=\frac{6n+2}{6n+3}=\frac{6n+3-1}{6n+3}=1-\frac{1}{6n+3}.\)
Nhận thấy: \(\frac{1}{2n+1}>\frac{1}{6n+3}\)
=> \(1-\frac{1}{6n+3}>1-\frac{1}{2n+1}\)
<=> 2Q > 2P
Hay Q > P
Cách làm:
Lấy cả 2 số nhận với 2 rồi so sánh phần bù tới 1.
Kết quả:P<Q.
tk mk nha các bn.
Có:
\(P=\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}=Q\)
Vậy P<Q
So sánh \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)với n là số tự nhiên
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)