Tìm 2 số tự nhiên lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401.Vậy số bé, số lớn là
tìm hai số tự nhiên lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401. số bé là........số lớn là
gọi hai số cần tìm là a, b và a<b
UCLN(a,b)=401 suy ra a=401m, b=401n (m,n thuộc N*)
ta có a + b=2005 = 401m + 401n=401(m+n)=2005
nên m+n=5. Ta có bảng
m | 0 | 1 | 2 |
a | 0 | 401 | 802 |
n | 5 | 4 | 3 |
b | 2005 | 1604 | 1203 |
từ bảng trên ta có được kết quả a=802; b=1203 ^_^
cảm ơn các bạn đã xem, thank you !!!!!
tìm hai số tự nhiên lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401. số bé ? số lớn ?
Gọi hai số cần tìm là a và b. Giả sử a < b.
ƯCLN(a ; b) = 401 => a = 401m ; b = 401n (m,n \(\in\) N*)
Ta có a + b = 401m + 401n = 401(m + n) = 2005
=> m + n = 5
Do a < b nên m < n. Ta có bẳng giá trị sau :
m | 0 | 1 | 2 |
a | 0 | 401 | 802 |
n | 5 | 4 | 3 |
b | 2005 | 1604 | 1203 |
Mà a,b > 500 nên a = 802 ; b = 1203
Tìm 2 số tự nhiên lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401
Tìm hai số có tổng bằng 2005, lớn hơn 500 và ước chung lớn nhất bằng 401. TÌm 2 số đó
Tìm hai số lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401. Tìm hai số đó
Tìm 2 STN lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401
Tìm 2 stn lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất = 401
Lời giải:
Gọi 2 số cần tìm là $a$ và $b$. Vì $ƯCLN(a,b)=401$ nên đặt $a=401x, b=401y$ với $x,y$ là số tự nhiên nguyên tố cùng nhau; $x,y>1$ do $a,b>500$
Ta có:
$401x+401y=2005$
$401(x+y)=2005$
$x+y=5$
Vì $x,y$ nguyên tố cùng nhau và $x>1, y>1$ nên $x=2, y=3$ hoặc $x=3, y=2$
$\Rightarrow (a,b)=(802, 1203), (1203, 802)$
tìm 2 số tự nhiên lớn hơn 500 có tổng bằng 2005 và ƯCLN bằng 401
gọi a là số lớn và b là số bé (a;b>500)(1)
vì ƯCLN(a;b)=401 nên a;b thuộc bội của 401
B(401)={0;401;802;1203;1604;......}
từ (1) suy ra a;b thuộc {802;1203;1604;....}
với a =802 thì b=2005-802 =1203(thoả mãn)
với a=1203 thì b=2005-1203=802(loại)
TÌM HAI SỐ TỰ NHIÊN LỚN HƠN 5 CÓ TỔNG BẰNG 14 VÀ ƯỚC CHUNG LỚN NHẤT BẰNG 2