Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số nguyên bằng bình phương của nó ;
Dùng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
P: “Mọi số tự nhiên đều có bình phương lớn hơn hoặc bằng chính nó”
Q: “Có một số thực cộng với chính nó bằng 0”
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
Dùng các kí hiệu để viết lại mệnh đề sau và viết mệnh đề phủ định của nó: Q: “Với mọi số thực thì bình phương của nó là một số không âm”
A. Q: ∀ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
B. Q: ∃ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là : Q : ∃ x ∈ R , x 2 < 0
C. Q: ∀x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∃ x ∈ R , x 2 < 0
D. Q: x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau:
Có một số nguyên không chia hết cho chính nó
Dùng kí hiệu “\(\forall \)” hoặc “\(\exists \)” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
b) Mọi số thực cộng với 0 đều bằng chính nó.
a) \(\exists x \in \mathbb{Z},\;x \not{\vdots} \;x.\)
b) \(\forall x \in \mathbb{R},\;x + 0 = x.\)
Dùng kí hiệu \(\forall\) hoặc \(\exists\) để viết các mệnh đề sau :
a) Có một số nguyên bằng bình phương của nó
b) Mọi số (thực) cộng với 0 đều bằng chính nó
c) Có một số hữu tỉ nhỏ hơn nghịch đảo của nó
d) Mọi số tự nhiên đều lớn hơn 0
a) \(\exists a\in\mathbb{Z}:a=a^2\)
b) \(\forall x\in\mathbb{R}:x+0=x\)
c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)
d) \(\forall n\in\mathbb{N}:n>0\)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số (thực) cộng với 0 đều bằng chính nó ;
Sử dụng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Có một số tự nhiên mà bình phương bằng 9.
a) “\(\forall x \in \mathbb{R},x + ( - x) = 0\)”
b) “\(\exists n \in \mathbb{N},{x^2} = 9\)”
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Có một số thực bằng số đối của nó.
∃ x ∈ R : x = - x (đúng)
Phủ định ∀ x ∈ R : x ≠ - x (sai)