Những câu hỏi liên quan
LP
Xem chi tiết
NT
30 tháng 12 2015 lúc 20:11

mai lên trường làm gì hả

Bình luận (0)
H24
30 tháng 12 2015 lúc 20:28

tuy mnik ko học trường  THCS Lương Ninh nhưng mà tới ngày 4/1 /2016 mới đi học mà 

nếu mai mà bạn lên trường thì chắc đi kiểm tra Chi đội ( giống trường mình) đóa

Bình luận (0)
NL
30 tháng 12 2015 lúc 20:33

ngày 4/1/2016 mới đi học đó bạn

Bình luận (0)
H24
Xem chi tiết

Kham khảo đề tự luận này nè bọn mình thi chúng đấy

Câu 1 (2,0 điểm) Thực hiện phép tính:

a) 2xy.3x2y3

b) x.(x2 - 2x + 5)

c) (3x2 - 6x) : 3x

d) (x2 – 2x + 1) : (x – 1)

Câu 2 (2,0 điểm). Phân tích các đa thức sau thành nhân tử:

a) 5x2y - 10xy2

b) 3(x + 3) – x2 + 9

c) x2 – y2 + xz - yz

Câu 3 (2,0 điểm). Cho biểu thức: Đề thi hk1 môn toán lớp 8

a) Với điều kiện nào của x thì giá trị của biểu thức A được xác định?

b) Rút gọn biểu thức A.

c) Tìm giá trị của biểu thức A tại x = 1.

Câu 4 (3,5 điểm). Cho tam giác MNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.

a) Chứng minh tứ giác MDHE là hình chữ nhật.

b) Gọi A là trung điểm của HP. Chứng minh tam giác DEA vuông.

c) Tam giác MNP cần có thêm điều kiện gì để DE = 2EA.

Câu 5 (0,5 điểm). Cho a + b = 1. Tính giá trị của các biểu thức sau:

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).

Bình luận (0)
KH

Tham khảo nek :

Bài 1: (3 điểm) Giải phương trình và bất phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

C) x – 2)2 + 2(x – 1) ≤ x2 + 4

Bài 2: (2 điểm) Một ô tô đi từ A đến B với vận tốc 60km/h và đi từ B về A với vận tốc 45km/h. Thời gian cả đi và về hết 7 giờ. Tính quãng đường AB.

Bài 3: (1 điểm)Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2

Bài 4: (4 điểm) Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD.

a) Chứng minh tứ giác ABMD là hình thoi

b) Chứng minh BD ⊥ BC

c) Chứng minh ΔAHD và ΔCBD đồng dạng

d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.

Đáp án và Hướng dẫn giải

Bài 1

a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2

(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)

Đề kiểm tra Toán 8 | Đề thi Toán 8

Vậy tập nghiệm của pt là: S = {-1; 1}

b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0

Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x

⇔ x = -5 hoặc x = 5/3

Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}

c) x – 2)2 + 2(x – 1) ≤ x2 + 4

⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4

⇔ -2x ≤ 2

⇔ x ≥ -1

Tập nghiệm S = {x | x ≥ -1}

Bài 2

Gọi x (km) là quãng đường AB (x > 0)

Thời gian đi từ A đến B là: x/60 (giờ)

Thời gian đi từ B về A là: x/45 (giờ)

Theo đề ra, ta có phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

⇔ 3x + 4x = 7.180 ⇔ 7x = 7.180 ⇔ x = 180 (nhận)

Trả lời: Quãng đường AB dài 180km.

Bài 3

Ta có: a + b = 1 ⇔ b = 1 – a

Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:

a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2

⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1

⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)

Vậy bất đẳng thức được chứng minh

Bài 4

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Xét tam giác vuông AHB, ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

Đề kiểm tra Toán 8 | Đề thi Toán 8

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

    

Bình luận (0)
CT
15 tháng 5 2019 lúc 14:13

bạn tham khảo cái này

Bài 1: (3 điểm) Giải phương trình và bất phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

C) x – 2)2 + 2(x – 1) ≤ x2 + 4

Bài 2: (2 điểm) Một ô tô đi từ A đến B với vận tốc 60km/h và đi từ B về A với vận tốc 45km/h. Thời gian cả đi và về hết 7 giờ. Tính quãng đường AB.

Bài 3: (1 điểm)Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2

Bài 4: (4 điểm) Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD.

a) Chứng minh tứ giác ABMD là hình thoi

b) Chứng minh BD ⊥ BC

c) Chứng minh ΔAHD và ΔCBD đồng dạng

d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.

Đáp án và Hướng dẫn giải

Bài 1

a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2

(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)

Đề kiểm tra Toán 8 | Đề thi Toán 8

Vậy tập nghiệm của pt là: S = {-1; 1}

b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0

Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x

⇔ x = -5 hoặc x = 5/3

Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}

c) x – 2)2 + 2(x – 1) ≤ x2 + 4

⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4

⇔ -2x ≤ 2

⇔ x ≥ -1

Tập nghiệm S = {x | x ≥ -1}

Bài 2

Gọi x (km) là quãng đường AB (x > 0)

Thời gian đi từ A đến B là: x/60 (giờ)

Thời gian đi từ B về A là: x/45 (giờ)

Theo đề ra, ta có phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

⇔ 3x + 4x = 7.180 ⇔ 7x = 7.180 ⇔ x = 180 (nhận)

Trả lời: Quãng đường AB dài 180km.

Bài 3

Ta có: a + b = 1 ⇔ b = 1 – a

Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:

a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2

⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1

⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)

Vậy bất đẳng thức được chứng minh

Bài 4

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Xét tam giác vuông AHB, ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

Đề kiểm tra Toán 8 | Đề thi Toán 8

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

Bình luận (0)
TR
Xem chi tiết
KS
15 tháng 1 2016 lúc 21:02

em mk có nhưnó ko chơi , cậu lấy ko

Bình luận (0)
HO
Xem chi tiết
HO
24 tháng 12 2015 lúc 19:34

ờ , sao cũng đc , tick tớ đi , tớ tick lại cho

Bình luận (0)
NQ
Xem chi tiết
NL
10 tháng 9 2015 lúc 19:34

gà t 18 tank mua k ban re 300k cho

Bình luận (0)
LN
10 tháng 9 2015 lúc 19:21

xóa cho rồi chứ để chiiii

Bình luận (0)
H24
31 tháng 1 2017 lúc 10:28

acc bang là gì đổi ko

Bình luận (0)
AE
Xem chi tiết
H24
4 tháng 2 2016 lúc 8:11

mk cũng mới học lớp 5 thôi, kết bạn nha!!!!:)

Bình luận (0)
H24
4 tháng 2 2016 lúc 8:08

tui nè tui học lớp 5 thôi à

Bình luận (0)
BT
4 tháng 2 2016 lúc 8:10

tui lớp 5 có muốn kết bạn không

Bình luận (0)
H24
Xem chi tiết
CR
2 tháng 11 2015 lúc 19:15

có !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
NH
Xem chi tiết
CM
Xem chi tiết
TH
10 tháng 11 2015 lúc 18:44

Tôi đứng lặng giữa cuộc đời nghiêng ngả
Để một lần nhớ lại mái trường xưa
Lời dạy ngày xưa có tiếng thoi đưa
Có bóng nắng in dòng sông xanh thắm

Thoáng quên mất giữa tháng ngày ngọt đắng
Trưởng thành này có bóng dáng hôm qua
Nhớ đc điêu gì đc dạy những ngày xa
Áp dụng - chắc nhơ cội nguồn đã có

Nước mắt thành công hoà nỗi đau đen đỏ
Bậc thềm nào dìu dắt những bước đi
Bài học đời đã học đc những gì
Có nhắc bóng người đương thời năm cũ

Vun xới cơn mơ bằng trái tim ấp ủ
Để cây đời có tán lá xum xuê

Bóng mát dừng chân là một chốn quê
Nơi ơn tạ là mái trường nuôi lớn

Xin phút tĩnh tâm giữa muôn điều hời hợt
Cảm tạ mái trường ơn nghĩa thầy cô

Bình luận (0)