Cho tam giác ABC có trung tuyến BD, CE vuông góc tại G , biết BD= 9 ( cm ), CE= 12(cm). Tính BC
cho tam giác ABC các đường trung tuyến BD,CE cho biết BC=10cm BD=9 cm CE=12 cm
chứng minh
â)BD vuông góc với CE
b)tính diện tích tam giác ABC
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Cho tam giác ABC có các đường trung tuyến BD và CF vuông góc với nhau Tính độ dài BC biết BD = 9 cm ,CE = 12 cm
Cho tam giác ABC có hai đường trung tuyến BD và CE vuông góc với nhau. Biết rằng BD=9 cm,CE=12 cm.Tính BC
ta dựa theo định lí ba đường trung tuyến của một tam giác cùng đi qua 1 điểm. Điểm đó cách mỗi đỉnh bằng \(\frac{2}{3}\)độ dài đường trung tuyến.
9*2/3=6
12*2/3=8
vậy ta áp dụng định lí py ta go
AB^2+AC^2=BC^2
=> 6^2+8^2=100
căn của 100 là 10
Vậy BC=10
Cho tam giác ABC có các đường trung tuyến BD và CE vuông góc với nhau
Tính độ dài của BC biết BD = 9 cm CE = 12 cm
Giải giúp mình nhé !!! :-)
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.
Cho tam giác ABC có trung tuyến BD, CE vuông góc tại G, biết BD=9cm, CE=12cm. Tính BC?
hình như thiếu đề bạn à , G ở đâu , bạn ghi lại đề đi , rồi gửi link qua cho mk
Bài 1: Cho tam giác ABC có AB = 6 cm, AC = 8 cm. Hai đường trung tuyến BD và CE vuông góc với nhau tại G. Tính độ dài đoạn BC là?
Bài 2 : Cho tam giác ABC có hai đường phân giác BD và CE cắt nhau tại I. Chứng minh rằng : Nếu 2BI.CI = BD.CE thì tam giác ABC vuông ?
Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có
\(DC^2=GD^2+GC^2\)(3)
Từ (1),(2) và (3) ta có
\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)
\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)
Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\) (5)
Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có
\(ED^2=GD^2+EG^2\) (6)
Từ (4),(5) và (6) ta có
\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)
\(\Rightarrow\text{4BC^2}=100-BC^2\)
\(\Leftrightarrow5BC^2=100\)
\(\Leftrightarrow BC^2=20\)
\(\Leftrightarrow BC=\sqrt{20}\)(cm)
Vậy \(BC=\sqrt{20}cm\)
Cho tam giác ABC có trung tuyến BD= 6cm, trung tuyến CE= 4,5 cm,và BD vuông góc CE tại O. Diện tích tam giác BOE =.... cm2
chtt
mọi ng ơi cho mk mấy **** nữa thôi là mk đc lên bảng xếp hàg rồi mọi ng làm ơn cho mk cái đi lm ơn
Cho tam giác ABC có AB = 6 cm, AC = 8 cm. Hai đường trung tuyến BD và CE vuông góc với nhau tại I
Tính BC
Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC
Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.
Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:
GE2+GB2=BE2⇒y2+4x2=9 (1)
GD2+GC2=CD2⇒x2+4y2=16 (2)
Từ (1) và (2) ta có: 5(x2+y2)=25
⇒x2+y2=5
Áp dụng định lý Pitago cho tam giác vuông BGC, ta có:
BC2=GB2+GC2=4x2+4y2=20
Vậy: BC = \(\sqrt[2]{5}\)