Những câu hỏi liên quan
DQ
Xem chi tiết
H24
29 tháng 9 2018 lúc 20:18

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

Bình luận (0)
H24
29 tháng 9 2018 lúc 20:18

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

Bình luận (0)
LT
Xem chi tiết
DK
Xem chi tiết
YV
28 tháng 2 2016 lúc 18:10

ta dựa theo định lí ba đường trung tuyến của một tam giác cùng đi qua 1 điểm. Điểm đó cách mỗi đỉnh bằng \(\frac{2}{3}\)độ dài đường trung tuyến.

9*2/3=6

12*2/3=8

vậy ta áp dụng định lí py ta go 

AB^2+AC^2=BC^2

=> 6^2+8^2=100

căn của 100 là 10 

Vậy BC=10

Bình luận (0)
CN
Xem chi tiết
AH
12 tháng 7 2018 lúc 7:38

ai tích mình mình tích lại cho

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 1 2018 lúc 9:12

Bình luận (0)
NH
Xem chi tiết
NT
13 tháng 1 2016 lúc 9:55

hình như thiếu đề bạn à , G ở đâu , bạn ghi lại đề đi , rồi gửi link qua cho mk

Bình luận (0)
PN
Xem chi tiết
PN
24 tháng 6 2015 lúc 6:45

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

Bình luận (0)
PL
27 tháng 8 2015 lúc 9:36

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)

Bình luận (0)
NA
2 tháng 5 2016 lúc 21:12

 bn oi nhin no ssao ak

Bình luận (0)
HY
Xem chi tiết
LA
27 tháng 12 2015 lúc 14:59

SBOE =3 cm2

Bình luận (0)
LT
27 tháng 12 2015 lúc 14:46

chtt 

mọi ng ơi cho mk mấy **** nữa thôi là mk đc lên bảng xếp hàg rồi mọi ng làm ơn cho mk cái đi lm ơn

Bình luận (0)
HP
Xem chi tiết
UN
12 tháng 8 2016 lúc 16:44

Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC

Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.


Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:

GE2+GB2=BE2⇒y2+4x2=9 (1)

GD2+GC2=CD2⇒x2+4y2=16 (2)

Từ (1) và (2) ta có: 5(x2+y2)=25

⇒x2+y2=5

Áp dụng định lý Pitago cho tam giác vuông BGC, ta có: 

BC2=GB2+GC2=4x2+4y2=20

Vậy: BC = \(\sqrt[2]{5}\)

Bình luận (0)