Những câu hỏi liên quan
CC
Xem chi tiết
H24
10 tháng 2 2019 lúc 10:49

1.50+2.49+3.48+...+49.2+50.1=

= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)

= (2500+50).50:2-41650

= 63750-41650=22100


 
Bình luận (0)
CU
10 tháng 2 2019 lúc 10:51

2, 

A = 1.2 + 2.3 + 3.4 + ... + 2011.2012

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012

3A = 2011.2012.2013

A = 2011.2012.2013 : 3 

A = 2714954572

Bình luận (0)
H24
10 tháng 2 2019 lúc 10:53

1)A=22100

2)B=60236

Bình luận (0)
P0
Xem chi tiết
ZN
6 tháng 3 2023 lúc 19:25

\(A=\dfrac{7}{1.2}+\dfrac{7}{2.3}+\dfrac{7}{3.4}+...+\dfrac{7}{2011.2012}\)

\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)\)

\(A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)

\(A=7\left(1-\dfrac{1}{2012}\right)=7.\dfrac{2011}{2012}=\dfrac{14077}{2012}\)

Bình luận (0)
H24
Xem chi tiết
DH
15 tháng 2 2016 lúc 15:49

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3

=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012

=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013

=> 3S = 2011.2012.2013

=> S = ( 2011.2012.2013 ) : 3

Bình luận (0)
NP
15 tháng 2 2016 lúc 15:45

3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

Bình luận (0)
DQ
15 tháng 2 2016 lúc 15:47

S=2714954572

Bình luận (0)
H24
Xem chi tiết
DC
19 tháng 4 2022 lúc 22:26

A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012

A = 1 - 1/2012

A = 2011/2012

B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012

B = 1/2 - 1/2012

B = 1005/2012

Bình luận (2)
NH
19 tháng 4 2022 lúc 22:30

a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(A=1-\dfrac{1}{2012}\)

\(A=\dfrac{2011}{2012}\)

 

b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)

\(B=\dfrac{1005}{4024}\)

 

Bình luận (0)
NT
Xem chi tiết
BA
1 tháng 1 2016 lúc 14:49

vậy thì tổng của : -1+(-2)+(-3)+.........+(-49) = -(1+2+3+..........+49) = -1225

Bình luận (0)
PL
Xem chi tiết
E3
Xem chi tiết
H24
22 tháng 5 2021 lúc 9:55

`1/(2.3)+1/(3.4)+......+1/(99/100)`
`=1/2-1/3+1/3-1/4+..........+1/99-1/100`
`=1/2-1/100`
`=49/100`

Bình luận (2)
EY
22 tháng 5 2021 lúc 9:59

Đặt A= \(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{99.100}\)

      A= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\)\(\dfrac{1}{99}-\dfrac{1}{100}\)

     A=\(\dfrac{1}{2}-\dfrac{1}{100}\)

   A=\(\dfrac{49}{100}\)

Bình luận (0)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{100}\) 

\(=\dfrac{49}{100}\)

Bình luận (0)
CK
Xem chi tiết
DV
9 tháng 6 2016 lúc 20:42

Ta có:

3S = 1.2.3 + 2.3.4 + 3.4.3 + ... + 99.100.3

3S = 1.2 ( 3 - 0 ) + 2.3. ( 4 - 1 ) + 3.4 . ( 5 - 2 )............... 99.100 . ( 101 - 98 )

3S = ( 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )

3S = 99.100.101 - 0.1.2

3S = 999900 - 0

3S = 999900

S = 999900 : 3

S = 333300

Bình luận (0)
MT
9 tháng 6 2016 lúc 20:41

Gọi A là biểu thức ta có: 
A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

Bình luận (0)
CK
30 tháng 6 2016 lúc 8:34

Thank you very much

Bình luận (0)
07
Xem chi tiết
NM
2 tháng 10 2021 lúc 10:22

\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\\ =\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\right]\\ =\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (4)