Hình chóp S.ABC có đáy là tam giác đều có A B = B C = 2 a ; S A ⊥ ( A B C ) và S A = a 3 Thể tích hình chóp S.ABC bằng
A. a 3
B. a 3 2 12
C. a 3 4
D. a 3 3 4
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, A B = a 3 , A C = 2 a . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính theo a thể tích khối chóp S.ABC
A. a 3 3 4
B. a 3 2
C. a 3 3 2
D. 3 a 3 4
Gọi H là trung điểm AB. Có
Ta có
Khi đó thể tích khối chóp S.ABC là
Chọn đáp án A.
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = a 3 , AC = 2a Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính theo a thể tích khối chóp S.ABC
Chọn A
Gọi H là trung điểm AB, có
Khi đó thể tích khối chóp S>ABC là
Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA = 2 a 3 3 . Gọi D là điểm đối xứng của B qua C. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.A
Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, cạnh a 2 2 . Gọi D là điểm đối xứng của B qua C. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABD.
A. R = a 39 7
B. R = a 35 7
C. R = a 37 6
D. R = a 39 6
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, A B = a , A C = a 5 , mặt bên SBC là tam giác đều và nằm trong măt phẳng vuông góc với đáy. Tính thể tích V của khối chóp S.ABC
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, SA = a. Tính thể tích khối chóp S.ABC.
A. a 3 3 12
B. a 3 4
C. a 3 3 4
D. a 3 12
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, SA = a. Tính thể tích khối chóp S.ABC
A. V = a 3 3 12
B. V = a 3 4
C. V = a 3 3 4
D. V = a 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết ΔSAB là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC biết AB = a, AC = a 3 .
A. a 3 6 12
B. a 3 6 4
C. a 3 2 6
D. a 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S.ABC là:
A. a 3 6
B. a 3 3
C. a 3 8
D. 2 a 3
Đáp án C
Gọi I là trung điểm của A B ⇒ S I ⊥ A B C
Ta có S I = a 2 − a 2 2 = a 3 2 ; S A B C = 1 2 a 2 sin 60 ° = a 2 3 4
Thể tích của khối chóp S . A B C là:
V = 1 3 S I . S A B C = 1 3 . a 3 2 . a 2 3 4 = a 3 8