Trong không gian O x y z cho mặt phẳng P : 5 x + m y + 4 z + n = 0 đi qua giao tuyến của hai mặt phẳng α : 3 x − 7 y + z − 3 = 0 và β : x − 9 y − 2 z + 5 = 0 . Tính m + n .
A. 6
B. - 16
C. - 3
D. - 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 3 x - 2 y + z - 14 = 0 . Gọi H(x,y,z) là hình chiếu của O lên mặt phẳng (P) thì x + y + z bằng
A. 0
B. 2
C. 1
D. 3
Gọi d là đường thẳng đi qua O vuông góc với (P)
Trong không gian Oxyz, cho ba mặt phẳng (P), (Q), (R) lần lượt có phương trình là ( m 2 + m)x - (m + 2)y + z = 0; x + y + z = 0; 2x + y - z = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R)?
A. m = 1
B. m = -1
C. m = -3/2
D. m = -3/2 hoặc m = -1
Đáp án A
Ta có:
Mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R) khi và chỉ khi
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P): x-y+z-5=0. Tính khoảng cách d từ M(1;2;1) đến mặt phẳng (P) được :
A. d = 15 3
B. d = 12 3
C. d = 5 3 3
D. d = 4 3 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) = x - y + z - 5 = 0. Tính khoảng cách d từ M(1 ; 2 ; 1) đến mặt phẳng ( P ) được:
A. d = 15 3
B. d = 12 3
C. d = 5 3 3
D. d = 4 3 3
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 3 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P).
A. M(-1 ;0 ;4)
B. M(1 ;0 ;-4)
D. M(-5 ;-2 ;2)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P)
A . M ( - 1 ; 0 ; 4 )
B . M ( 1 ; 0 ; - 4 )
C . M ( 7 3 ; 5 3 ; 17 3 )
D . M ( - 5 ; - 2 ; 2 )
Trong không gian Oxyz, cho mặt phẳng P : x - y + 6 z + m = 0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Để d nằm trong (P) thì
A. m = -20
B. m = 20
C. m = 0
D. m = -10
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 = 0,
(Q): 2x + y + z - 1 = 0. Mặt phẳng (R) đi qua điểm M(1;1;1) và chứa
giao tuyến của (P) và (Q).
Phương trình của (R): m.(x - 2y - z + 3) + (2x + y + z -1) = 0. Khi đó giá trị của m là
A. 3
B. 1 3
C. -1
D. -3
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 =0, (Q): 2x + y + z - 1= 0, . Mặt phẳng R đi qua điểm M(1;1;1) và chứa giao tuyến của (P) và (Q); phương trình của (R): m.(x-2y-z+3) + (2x+y+z-1). Khi đó giá trị của m là
A. 3
B. 1 3
C. - 1 3
D. 3
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0 , (Q): 3x-(m+2)y+(2m-1)z+3=0. Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.