Tính diện tích hình phẳng giới hạn bởi các điểm biểu diễn các số phức thỏa mãn z + 2 − i + z − 4 − i = 10
A. 12 π
B. 20 π
C. 15 π
D. Đáp án khác
Hình phẳng giới hạn bởi tập hợp điểm biểu diễn các số phức z thỏa mãn z - 3 + z + 3 = 10 có diện tích bằng
Cho số phức z = m - 2 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z nằm trên đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 1 3
B. 8 3
C. 4 3
D. 2 3
Cho số phức z = m + 3 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 4 3
B. 8 3
C. 2 3
D. 1 3
Cho số phức z = m + 3 + ( m 2 - 1 ) i với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 4/3
B. 8/3
C. 2/3
D. 1/3
Cho số phức z = m + m 3 - m i với m là tham số thực thay đổi. Tập hợp tất cả các điểm biểu diễn số phức z là đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 1 2
B. 1 4
C. 3 4
D. 3 2
Tập hợp tất cả các điểm biểu diễn số phức z thoả mãn z 2 + z + z ¯ = 0 là một đường tròn, diện tích giới hạn bởi đường tròn đó bằng
A. 4 π
B. 2 π
C. 3 π
D. π
Đặt z=x+yi ta có:
z 2 + z + z ¯ = 0 ⇔ x 2 + y 2 + 2 x = 0 .
Vậy tập hợp điểm biểu diễn số phức z là đường tròn có tâm I(-1;0),R=1.
Diện tích giới hạn bởi đường tròn bằng πR 2 = π .
Chọn đáp án D.
Tập hợp tất cả các điểm biểu diễn số phức z thoả mãn z 2 + z + z ¯ = 0 là một đường tròn, diện tích giới hạn bởi đường tròn đó bằng
Cho số phức z thỏa mãn điều kiện 3 ≤ |z-3i+1| ≤ 5. Tập hợp các điểm biểu diễn của Z tạo thành một hình phẳng. Tính diện tích S của hình phẳng đó.
A . S = 25 π
B . S = 8 π
D . S = 4 π
D . S = 16 π
Đáp án D.
Gọi M là điểm biểu diễn của số phức z. Xét điểm A(-1;3) thì theo điều kiện, ta có:
Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5
Cho số phức z thỏa mãn điều kiện 3 ≤ z − 3 i + 1 ≤ 5. Tập hợp các điểm biểu diễn của Z tạo thành một hình phẳng. Tính diện tích S của hình phẳng đó.
A. S = 25 π .
B. S = 8 π .
C. S = 4 π .
D. S = 16 π .
Đáp án D.
Gọi M là điểm biểu diễn của số phức z. Xét điểm A − 1 ; 3 thì theo điều kiện, ta có: 3 ≤ z − 3 i + 1 ≤ 5 ⇔ 3 ≤ A M ≤ 5. Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5
⇒ S = π 5 2 − 3 3 = 16 π .