Cho hàm số y=f(x). Hàm số y=f' (x) có bảng biến thiên như sau
Bất phương trình f ( e x ) < e 2 x + m nghiệm đúng với mọi x ∈ ( ln 2 ; ln 4 ) khi và chỉ khi
A. m ≥ f ( 2 ) - 4
B. m ≥ f ( 4 ) - 16
C. m > f ( 2 ) - 4
D. m > f ( 4 ) - 16
Cho hàm số y= f(x) Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < 3 e x + 2 + m có nghiệm x ∈ ( - 2 ; 2 ) khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình f(f(x))+2 bằng
A. 4
B. 3
C. 2
D. 6
Bất phương trình e x ≥ m - f ( x ) có nghiệm x ∈ 4 ; 16 khi và chỉ khi
A. m ≤ f ( 4 ) + e 2
B. m < f ( 4 ) + e 2
C. m ≤ f ( 16 ) + e 4
D. m < f ( 16 ) + e 4
Cho hàm số y = f(x). Hàm số y = f'(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < e x + m đúng với mọi x ∈ - 1 ; 1 khi và chỉ khi
Cho hàm số y= f(x).Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < e x + m đúng với mọi x ∈ ( - 1 ; 1 ) khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 2 = 0 là:
A. 0
B. 2
C. 1
D. 3
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 2 = 0 là:
A. 0
B. 3
C. 1
D. 2
Đáp án B
f ( x ) − 2 = 0 ⇔ f ( x ) = 2
Dựa vào bảng biến thiên để xét sự tương giao giữa đồ thị hàm số f(x) và đường thẳng x = 2 ta thấy pt có 3 nghiệm
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x)-2=0 là:
A. 0
B. 3
C. 1
D. 2
Đáp án B.
f ( x ) - 2 = 0 ⇔ f ( x ) = 2
Dựa vào bảng biến thiên để xét sự tương giao giữa đồ thị hàm số f(x) và đường thẳng x=2 ta thấy pt có 3 nghiệm.
Cho hàm số y= f(x).Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình m + e f ( x ) < e x có nghiệm khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y=f(x) . Hàm số y= f'(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < ln x + m đúng với mọi x ∈ ( 0 ; 1 ) khi và chỉ khi
A. I = l a a
B. I = l a
C. I = l a ( a - 1 )
D. I = l a ( a + 1 )