Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 3 + x 2 + m cắt trục hoành tại đúng 1 điểm
A. m < − 4 27 hoặc m>0
B. m>0
C. m < − 4 27
D. − 4 27 < m < 0
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 1 x 2 + x + m cắt trục hoành tạo ba điểm phân biệt.
A. m > - 1 4
B. m > 1 4 v à m ≠ 2
C. m < 1 4
D. m < 1 4 v à m ≠ - 2
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 3 - 3 x + 2 cắt đường thẳng y = m - 1 tại 3 điểm phân biệt
A. 1 ≤ m ≤ 5
B. 1 < m < 5
C. 1 ≤ m < 5
D. 1 < m ≤ 5
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số ( x - 1 ) ( x 2 + x + m ) cắt trục hoành tạo ba điểm phân biệt.
A.
B. và
C.
D. và
Cho hàm số y=f(x) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y=2m-1 cắt đồ thị (C) tại 2 điểm phân biệt
A.
B.
C.
D.
Cho hàm số y = f ( x ) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 2 m - 1 cắt đồ thị (C) tại 2 điểm phân biệt
A. m > 3
B. m < 1
C. m = 1 m = 3
D. 1 < m < 3
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 1 x - m có tiệm cận đứng.
A. Với mọi m
B. m ≠ 0
C. m ≠ 1
D. m = 0
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x − 1 x − m có tiệm cận đứng
A. m = 0
B. Với mọi m
C. m ≠ 1
D. m ≠ 0