Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 2 x - 1 x + 1 lần lượt là
A. x = - 1 ; y = 1 2
B. x = - 1 ; y = 2
C. x = 1 ; y = 2
D. x = 2 ; y = - 1
Xét các mệnh đề sau
(1). Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
(2). Đồ thị hàm số y = x + x 2 + x + 1 x có hai đường tiệm cận ngang và một đường tiệm cận đứng
(3). Đồ thị hàm số y = x - 2 x - 1 x 2 - 1 có một đường tiệm cận ngang và hai đường tiệm cận đứng.
Số mệnh đề đúng là:
A. 0
B. 3
C. 2
D. 1
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Tìm số tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số y = 4 x 2 + 5 2 x + 1 - x - 1
A. 3.
B. 1.
C. 2.
D. 4.
Chọn C.
Hàm số có tập xác định là
Ta có
=> y = -2 là đường tiệm cận ngang của đồ thị hàm số đã cho.
Mặt khác,
Với mọi x > 0 ta có
=> x = 0 là đường tiệm cận đứng của đồ thị hàm số đã cho.
Vậy hàm số đã cho có 2 đường tiệm cận.
Tìm số tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số y = 4 x 2 + 5 2 x + 1 - x - 1
A. 3.
B. 1.
C. 2.
D. 4.
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 1 − 2 x − x + 2 là:
A. x = − 2 ; y = − 2
B. x = 2 ; y = − 2
C. x = − 2 ; y = 2
D. x = 2 ; y = 2
Đáp án là D.
Đồ thị có tiệm cận đứng và tiệm cận ngang lần lượt là: x = 2 ; y = 2.
Tìm số phát biểu đúng trong các phát biểu sau:
(1) Đồ thị hàm số y= x α với α > 0 nhận trục Ox làm tiệm cận ngang và nhận trục là tiệm cận đứng.
(2) Đồ thị hàm số y= x α với α > 0 không có tiệm cận.
(3) Đồ thị hàm số y = log a x với 1 < a ≠ 1 nhận trục Oy làm tiệm cận đứng và không có tiệm cận ngang.
(4) Đồ thị hàm số y=ax với 1 < a ≠ 1 nhận trục Ox làm tiệm cận ngang và không có tiệm cận đứng.
A. 2.
B. 1
C. 4
D. 3.
Phương pháp:
Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.
Cách giải:
Cả 4 phát biểu đều đúng
Chọn C
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \(\dfrac{x+\sqrt{x^2+1}}{x+1}\)
Lời giải:
TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)
\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)
Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$
\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)
Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths
Vậy có tổng 3 TCN và TCĐ
Tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = x + 2 x - 1 là:
A. y = 2, x = 1.
B. y = 1, x = 1.
C. y = -2, x = 1.
D. y = 1, x = -2.
Chọn B.
Ta có
suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Do
nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = x + 2 x - 1 là:
A.y=2;x=1
B.y=1;x=1
C.y=-2;x=1
D.y=1;x=-2
Các đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = 1 - x + x 3 3 + x là:
A. x=-3; y=1
B. x=-3; y=-1/2
C. x=3; y=1/2
D. x=3; y=-1/2
Hình vẽ bên là đồ thị của hàm số y=f(x). Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=f(x) là
A. x=-1; y=1
B. x=1; y=-1
C. x=-1; y=-1
D. x=1; y=1
Quan sát đồ thị có là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho.
Chọn đáp án A.