Những câu hỏi liên quan
PB
Xem chi tiết
CT
17 tháng 1 2019 lúc 7:34

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 4 2018 lúc 3:06

Quan sát đồ thị có  là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho.

Chọn đáp án A.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2018 lúc 5:31

Đáp án là D.

  Đồ thị có tiệm cận đứng và tiệm cận ngang lần lượt là: x = 2 ; y = 2.

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 10 2018 lúc 12:48

Chọn C.

Hàm số có tập xác định là 

Ta có 

=> y = -2  là đường tiệm cận ngang của đồ thị hàm số đã cho.

Mặt khác, 

Với mọi x > 0 ta có 

=> x = 0 là đường tiệm cận đứng của đồ thị hàm số đã cho.

Vậy hàm số đã cho có 2 đường tiệm cận.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 7 2019 lúc 9:14

Đáp án là C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 3 2017 lúc 9:20

Chọn B.

Ta có 

suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

Do 

nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số. 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 9 2019 lúc 13:21

Phương pháp:

Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.

Cách giải:

Cả 4 phát biểu đều đúng
Chọn C

Bình luận (0)
AH
Xem chi tiết
AH
29 tháng 5 2021 lúc 23:49

Lời giải:

TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)

\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)

Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$

\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)

Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths

Vậy có tổng 3 TCN và TCĐ

 

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 16:33

Đáp án B

Bình luận (0)