Trong không gian Oxyz, cho mặt phẳng P : 2 x − 2 y + z − 1 = 0 . Khoảng cách từ điểm M 1 ; − 2 ; 0 đến mặt phẳng (P) bằng:
A. 5
B. 2
C. 5 3
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) = x - y + z - 5 = 0. Tính khoảng cách d từ M(1 ; 2 ; 1) đến mặt phẳng ( P ) được:
A. d = 15 3
B. d = 12 3
C. d = 5 3 3
D. d = 4 3 3
Trong không gian Oxyz, cho mặt phẳng P : 2 x - 2 y + z + 5 = 0 Trong không gian Oxyz, cho mặt phẳng ∆ có phương trình tham số x = - 1 + t y = 2 - t z = - 3 - 4 t . Khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng:
A. - 4 3
B. 4 3
C. 2 3
D. 4 9
Trong không gian Oxyz, khoảng cách giữa đường thẳng d : x - 1 1 = y 1 = z - 2 và mặt phẳng (P): x+y+z+2=0 bằng
A. 2 3
B. 3 3
C. 2 3 3
D. 3
Trong không gian Oxyz, cho đường thẳng d: x - 1 1 = y 1 = z - 2 song song với mặt phẳng (P): x+y+z+2=0. Khoảng cách giữa d và (P) bằng
A. 2 3
B. 3 3
C. 2 3 3
D. 3
Trong không gian Oxyz, cho đường thẳng ∆: (x-1)/1 = (y-1)/2 = z/2và mặt phẳng (P):x + by + cz -3 = 0 Biết mặt phẳng (P) chứa ∆ và cách O một khoảng lớn nhất. Tổng a+b+c bằng
A.1
B. 3
C. -2
D. -1
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y 1 = z - 2 song song với mặt phẳng (P): x+ y+ z +2 = 0. Khoảng cách giữa d và (P) bằng
A. 2 3
B. 3 3
C. 2 3 3
D. 3
Trong không gian Oxyz, khoảng cách giữa đường thẳng d : x + 1 - 2 = y - 2 2 = z + 3 3 và mặt phẳng (P): x-2y+2z-5=0 bằng
A. 16 3
B. 2
C. 5 3
D. 3
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz cho điểm A(1;2;3) và mặt phẳng (P): x + y + z + 3 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
A. 3 3 .
B. 4 3 .
C. 2 3 .
D. 3 .
Đáp án A
Áp dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng em có
d A , P = 1 + 2 + 3 + 3 1 2 + 1 2 + 1 2 = 3 3 .
Trong không gian Oxyz tính khoảng cách d giữa hai mặt phẳng cho bởi các phương trình z − 2 = 0 và z − 8 = 0 .
A. d = 3
B. d = 6
C. d = 5
D. d = 10
Đáp án B.
Khoảng cách d giữa hai mặt phẳng cho bởi các phương trình z − 2 = 0 và z − 8 = 0 là d = 8 − 2 = 6 .