Những câu hỏi liên quan
PV
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 9 2017 lúc 8:39

Gọi O, I lần lượt là trung điểm của AC, SC.

Ta có:

 

∆ A B C  vuông cân tại B  O là tâm đường tròn ngoại tiếp và A C = A B 2 = a 2 .

∆ S A C  vuông tại A, I là trung điểm của S C ⇒ I S = I C = I A 2  

Từ (1), (2) suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABC, bán kính

Chọn: A

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 11 2018 lúc 15:54

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 8 2018 lúc 7:32

Đáp án A.

Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O

=> ABCD là hình vuông => AB//CD

=> d(AB;SC) = d(AB;(SCD))  = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của ABCD).

Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 5 2017 lúc 12:59

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 3:02

Đáp án C

Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)

suy ra  S H ⊥ A B C

Ta có

  S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C   = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2019 lúc 16:53

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2017 lúc 3:46

Đáp án B.

Dựng tam giác đều IAB (I và C cùng phía bờ AB).

Ta có:

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

Ta có:

 

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 5 2018 lúc 7:49

Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2018 lúc 14:50

Đáp án là D

Gọi H là trung điểm của BC, ta có: AH ⊥ BC

Do SA ⊥ (ABC) 

Ta có: 

Xét tam giác vuông SAH:

Bình luận (0)