cho x+y=2
chứng minh: 2 =< căn (x^2+y^2) + căn(xy) =< căn 6
cho x> căn 2, y> căn 2,chứng minh x^4-x^3y+x^2y^2-xy^3+y^4>x^2+y^2
(căn x-căn y)/xy căn xy/((1/x+1/y)*1/(x+y+2 căn xy)+2/(căn x + căn y)^3*(1/ căn x+1/ căn y))v
1. x, y, z >=0.
Chứng minh rằng: 4(xy+yz+xz)<=Căn((x+y)(y+z)(x+z))(căn(x+y)+căn(y+z)+căn(x+z)).
2. Cho a, b, c>0 thỏa 1/a+1/b+1/c=3.
Tìm GTLN của P=1/căn(a2-ab+b2)+1/căn(b2-bc+c2)+1/căn(c2-ca+a2)
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
Giải 2 hệ phương trình:
bài 1: 1: căn(xy) + căn(1-y)=căn(y) 2: 2 căn (xy-y)-căn(y)=-1
bài 2: 1: x^3-x=(x^2).y-2 2:căn[2.(căn(x^4+1)] - 5 căn(|x|)+căn(y)+2=0
Ai đúng mik tik!
Cho x,y,z thuộc R thỏa mãn |x|,|y|,|z|>0. Chứng minh căn(1-x^2)+căn(1-y^2)+căn(1-z^2)=<căn(9-(x+y+z)^2)
cho x,y,z là các số thực dương và x^2+y^2+z^2=x+y+z. chứng minh rằng x+y+z+3>=6 căn 3 xy+yz+xz/3. Mn giải giúp mình với ạ
xy -y^2 +x =y và x căn y + y căn x =2
(x -1)^2 + (y + 2)^2 =17 và (x +2)^2 + (y-1)^2 =5
(căn x +2).(1-căn y)=4 và căn x - căn y/căn x + 2 =1/2
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
cho A=x^2/(x+y)+y^2/(z+y)+z^2/(x+z) với x,y,z >0 thoa mãn A=căn xy +căn yz +căn xz .GTNN của A
mk k sửa đc mk viết thiếu đề là A=.....=2(ở trên)
nếu bạn biết trả lời giúp mình đi nói thế làm gì