Cho hàm số y = f x có bảng biến thiên như hình vẽ dưới đây
Số nghiệm của phương trình f x + 3 = 0 là
A. 2.
B. 3.
C. 1.
D. 0.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây
Số nghiệm của phương trình f(x)+3=0 là
A. 3.
B. 2.
C. 1.
D. 0.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây
Số nghiệm của phương trình f(x)+3=0 là
A. 2.
B. 3.
C. 1.
D. 0.
Đáp án C
Phương trình tương đương với f(x)=-3, , kẻ đường thẳng y=-3 cắt đồ thị hàm số đã cho tại duy nhất một điểm có hoành độ nhỏ hơn -2.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực của phương trình |2f(x)-1|=3 là
A. 3.
B. 4.
C. 2.
D. 5.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực của phương trình
2
f
(
x
)
-
1
=
3
là
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.
Số nghiệm của phương trình f(x) + 3 = 0là
A. 0
B. 3
C. 2
D. 1
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên
Số nghiệm của phương trình |f(x)|=2 là
A. 3.
B. 6.
C. 4.
D. 5.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên:
Số nghiệm của phương trình f(x) - 2=0 là:
A. 1.
B. 2.
C. 0.
D. 3.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên:
Số nghiệm của phương trình f(x) - 2 = 0 là:
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên:
Số nghiệm của phương trình f(x) – 2 = 0 là:
A. 0
B. 1
C. 3
D. 2
Đáp án D.
Phương pháp: Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
Cách giải: f(x) – 2 = 0 → f(x) = 2
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2
Dựa vào BBT ta thấy phương trình có 2 nghiệm
Bất phương trình e x ≥ m - f ( x ) có nghiệm x ∈ 4 ; 16 khi và chỉ khi
A. m ≤ f ( 4 ) + e 2
B. m < f ( 4 ) + e 2
C. m ≤ f ( 16 ) + e 4
D. m < f ( 16 ) + e 4