Cho các số phức z thỏa mãn i z + 2 - i = 0 Tính khoảng cách từ điểm biểu diễn hình học của z trên mặt phẳng tọa độ Oxy đến điểm M(3; -4)
A. 2 5
B. 13
C. 2 10
D. 2 2
Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M(3;-4) là:
A. 2 5
B. 13
C. 2 10
D. 2 2
Cho số phức z thỏa mãn ( z + 3 - i ) ( z ¯ + 1 + 3 i ) là một số thực. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường thẳng. Khoảng cách từ gốc tọa độ đến đường thẳng đó bằng
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Cho số phức z thỏa mãn (3-4i)z - 4 | z | = 8. Trên mặt phẳng tọa độ, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức z thuộc tập nào?
A . 9 4 ; + ∞
B . 1 4 ; 5 4
C . 0 ; 1 4
D . 1 2 ; 9 4
Đáp án D
Ta có
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó
Cho số thực a thay đổi và số phức z thỏa mãn z a 2 + 1 = i - a 1 - a a - 2 i . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z . Khoảng cách giữa hai điểm M và I (-3; 4) (khi a thay đổi) là:
A. 4
B. 3
C. 5
D. 6
Cho số phức z thỏa mãn (3-4i)z - 4 z = 8. Trên mặt phẳng tọa độ, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức z thuộc tập nào?
A . ( 9 4 ; + ∞ )
B . ( 1 4 ; 5 4 )
C . ( 0 ; 1 4 )
D . ( 1 2 ; 9 4 )
Đáp án D
Ta có (3-4i)z - 4 z = 8
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó OM =
Tính diện tích hình phẳng giới hạn bởi các điểm biểu diễn các số phức thỏa mãn z + 2 − i + z − 4 − i = 10
A. 12 π
B. 20 π
C. 15 π
D. Đáp án khác
Phương pháp:
Tìm tập hợp các điểm biểu diễn số phức bài cho sau đó tính diện tích hình phẳng được giới hạn bởi các điểm đó.
Cách giải:
Cho số phức z thỏa mãn 3 - 4 i z - 4 z = 8 . Trên mặt phẳng tọa độ, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức z thuộc tập nào?
A. 9 4 ; + ∞
B. 1 4 ; 5 4
C. 0 ; 1 4
D. 1 2 ; 9 4
Đáp án D
Ta có 3 - 4 i z - 4 z = 8 ⇔ 3 - 4 i z = 8 + 4 z ( * )
Lấy môđun hai vế của (*) và sử dụng công thức z 1 z 2 = z 1 . z 2 , ta được
* ⇔ 3 - 4 i z = 8 + 4 z ⇔ 3 - 4 i . z = 4 2 + 1 z ⇔ 5 z = 4 2 + 1 z
⇔ 5 z 2 = 4 2 z + 1 ⇔ 5 z 2 - 8 z - 4 = 0 ⇔ z = 2
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó O M = x 2 + y 2 = z = 2 ∈ 1 2 ; 9 4 .
Cho số phức z thỏa mãn: |z - 1 + i| = 2. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng.
B. Một đường Parabol.
C. Một đường tròn có bán kính bằng 2.
D. Một đường tròn có bán kính bằng 4.
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình: