chung to rang : (9m+9).(9m+2).(9m+3).(9m+4) chia het cho 5 voi moi m thuoc N
chung minh rang voi moi so nguyen m thi 4m^3 + 9m^2 - 19m - 30 chia het cho 6
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
\(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.\(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).\(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
Chung to rang : (9m+9)(9m+2)(9m+3)(9m+4) chia het cho 5 voi moi m thuoc N
Giai thich gium minh nha cac ban
Ai lam xong minh tick cho
BAI 1 :
CHO 3a + 2b chia het cho 17 ( a , b thuoc N ) . CHUNG MINH RANG : 10a + b chia het cho 17
BAI 2 :
CHUNG MINH RANG : neu m + 4n chia het cho 13 . MOI m,n deu thuoc N
BAI 3 : CHUNG MING RANG :
a) 55 - 54+ 53 chia het cho 7
b) 109 + 108+ 107chia het cho 222
GIUP MINH 3 BAI NAY VOI !
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
chung to rang voi moi n thuoc Z thi
a)(n+6)x(n+7) chia het cho 2
b) n2 +n+3 khong chia het cho 2
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
chung minh rang : voi moi n thuoc N thi (n+8)(n+3) chia het cho 2
Để chứng minh , ta xét 2 trường hợp
TH1: n là số lẻ
=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(1)
TH2 : n là số chẵn
=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(2)
Từ (1) và (2)
=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N
chung minh rang voi moi n thuoc tap n thi
a,(n-7)*(n+6)+65khong chia het cho 169
b,(n-9)/*(n-2)+35 khong chia het cho 49
chung to rang A=2^2n -1 chia het cho 5 voi n thuoc N ,n >2
Chung to rang :
a)(2n + 1) (2n+2) chia het cho 3 . Voi n thuoc so tu nhien
b)(5n+1) (5n+2) chia het cho 6. Voi n thuoc so tu nhien.