Những câu hỏi liên quan
PB
Xem chi tiết
CT
6 tháng 6 2017 lúc 10:06

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 11 2019 lúc 8:33

Đáp án C.

Ta có I 2 ; 1 .

Tiếp tuyến với C  tại điểm M x 0 ; x 0 + 2 x 0 − 2  là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2

Tọa độ A là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2

Tọa độ B là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B  

Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2  

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 11 2017 lúc 7:30

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2017 lúc 12:47

Chọn đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2017 lúc 15:33

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2018 lúc 10:43

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 10 2017 lúc 4:39

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 7 2019 lúc 3:23

Đáp án là D

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 8 2017 lúc 8:55

Đáp án A

Ta có: I 3 2 ; 1 2 . PTTT tại điểm M bất kì là:  y = − 1 2 x 0 − 3 2 x − x 0 + x 0 − 1 2 x 0 − 3 Δ

Khi đó: d I ; Δ = 1 2 2 x 0 − 3 + x 0 − 1 2 x 0 − 3 − 1 2 1 2 x 0 − 3 + 1 = 1 1 2 x 0 − 3 2 + 2 x 0 − 2 2 ≤ 1 2

Bình luận (0)