Cho số phức z thỏa mãn điều kiện z - 1 = 2 . Tìm giá trị lớn nhất của biểu thức T = z + i + z - 2 - i
Cho số phức z thỏa mãn điều kiện z - 1 = 2 .
Tìm giá trị lớn nhất của biểu thức T = z + i + z - 2 - i
A. maxT= 8 2
B. maxT=8
C. maxT= 4 2
D. maxT=4
Đáp án D
Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.
Cách giải:
Tập hợp các điểm z thỏa mãn điều kiện là đường tròn (C) tâm I(1;0) bán kính R= 2
Gọi M là điểm biểu diễn cho số phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1) là điểm biểu diễn cho số phức 2+i
Dễ thấy A,B ∈ C và
AB là đường kính của đường tròn (C)
vuông tại M
Đặt
Xét hàm số trên ta có:
Vậy maxT=4
Cho số phức z thỏa mãn điều kiện |z -2 + 2i | + | z + 1 -3i | = 34 . Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của |z + 1 + i|.
A. 6 34 v à 8
B. 6 34 17 v à 4
C. 34 v à 8
D. Đáp án khác.
Chọn B.
Gọi M (x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Gọi điểm A(2; -2) ; B(-1; 3) và C(-1; -1)
Phương trình đường thẳng AB: 5x + 3y - 4 = 0.
Khi đó theo đề bài
Ta có . Do đó quỹ tích M là đoạn thẳng AB.
Tính CB = 4 và .
Hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Vậy
Cho số phức z thỏa mãn điều kiện z - 1 = 2 . Tìm giá trị lớn nhất của T = z + i + z - 2 - i
A. m a x T = 8 2
B. m a x T = 4
C. m a x T = 4 2
D. m a x T = 8 2
Cho số phức z, tìm giá trị lớn nhất của z biết rằng z thỏa mãn điều kiện - 2 - 3 i 3 - 2 i + 1 = 1 .
A. 1
B. 2
C. 3
D. 2
Cho số phức z thỏa mãn điều kiện z = 1 . Tìm giá trị lớn nhất của A = 1 + z + 3 1 - z
A. 4 8
B. 2 15
C. 10
D. 2 10
Đáp án D
Đặt z = a + b i ⇒ a 2 + b 2 = 1 .
Khi đó A = a + 1 2 + b 2 + 3 a - 1 2 + b 2 = 2 a + 2 + 3 2 - 2 a
Xét hàm số f a = 2 a + 2 + 3 2 - 2 a với a ∈ - 1 ; 1 ta có
f a = 1 2 a + 2 - 3 2 - 2 a = 0 ⇔ 9 2 a + 2 = 2 - 2 a ⇔ a = - 4 5
Khi đó A m a x = 2 10
Cho số phức z thỏa mãn điều kiện |z| = 1. Tìm giá trị lớn nhất của A = |1+z| +3|1-z|
A . 4 8
B . 2 15
C . 10
D . 2 10
Đáp án D
Đặt
Khi đó
Xét hàm số
Khi đó
Cho số phức z thỏa mãn điều kiện z - 1 = 1 + i z . Đặt m = z , tìm giá trị lớn nhất của m.
A. 1
B. 2
C. 2 - 1
D. 2 + 1
Cho số phức z thỏa mãn điều kiện z - 1 - i + z + 1 + 3 i = 6 5 .
Giá trị lớn nhất của z - 2 - 3 i là
A. 4 5
B. 2 5
C. 6 5
D. 5 5
Đáp án D
Phương pháp:
- Biểu diễn số phức và giải bài toán tìm GTLN trên mặt phẳng tọa độ.
Cách giải: Gọi I(1;1), J(-1;-3), A(2;3).
Xét số phức , có điểm biểu diễn là M(x;y)
M di chuyển trên đường elip có tiêu điểm I và J, độ dài trục lớn là 3 5
Tìm giá trị lớn nhất của tức là tìm độ dài lớn nhất của đoạn AM khi M di chuyển trên elip.
Ta có:
điểm A nằm trên trục lớn của elip.
AM đạt độ dài lớn nhất khi và chỉ khi M trùng với B, là đỉnh của elip nằm trên trục lớn và khác phía A so với điểm I.
Gọi S là trung điểm của IJ
S(0;-1)
Độ dài đoạn AB=SA+SB
Vậy
Cho số phức z thỏa mãn điều kiện z - 1 - i + z + 1 + 3 i = 6 5 . Giá trị lớn nhất của z - 2 - 3 i là
↔ M I + M J = 6 5 nên M di chuyển trên đường elip có tiêu điểm I và J, độ dài trục lớn là 3 5
Tìm giá trị lớn nhất của z - 2 - 3 i tức là tìm độ dài lớn nhất của đoạn AM khi M di chuyển trên elip
AM đạt độ dài lớn nhất khi và chỉ khi M trùng với B, là đỉnh của elip nằm trên trục lớn và khác phía A so với điểm I.
Đáp án D