Những câu hỏi liên quan
PB
Xem chi tiết
CT
23 tháng 10 2018 lúc 5:23

Đáp án A

Bình luận (0)
HD
Xem chi tiết
LP
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Bình luận (0)
LP
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Bình luận (0)
LV
Xem chi tiết
AH
8 tháng 6 2021 lúc 21:36

Lời giải:

$\widehat{BAD}=60^0\Rightarrow \widehat{BAO}=30^0$

$\frac{BO}{AB}=\sin \widehat{BAO}=\sin 30^0=\frac{1}{2}$

$\Rightarrow BO=\frac{AB}{2}=\frac{a}{2}$

$BD=2BO=a$

$\frac{AO}{AB}=\cos \widehat{BAO}=\cos 30^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AO=\frac{\sqrt{3}a}{2}$

$\Rightarrow AC=\sqrt{3}a$

$S_{ABCD}=\frac{BD.AC}{2}=\frac{\sqrt{3}a^2}{2}$

$V_{S.ABCD}=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{3a}{4}.\frac{\sqrt{3}a^2}{2}=\frac{\sqrt{3}a^3}{8}$

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 7 2019 lúc 6:31

Đáp án C

Ta có: S A B C = 1 2 A B . A C   sin A = a 2 3 ⇒ S A B C D = 2 a 2 3

Do đó V = 1 3 S O . S A B C D = a 2 3 2 .

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 6:37

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 11:23

Chọn B.

Gọi O = AC ∩ BD. Vì ABCD là hình thoi nên BO ⊥ AC(1). Lại do:

Từ (1) và (2) ta có:BO ⊥ (SAC)

Ta có: 

Vì ABCD là hình thoi có ABC = 60 ° nên tam giác ABC đều cạnh a

Trong tam giác vuông SBO ta có: 

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 5 2018 lúc 4:41



Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 1 2019 lúc 17:00

Chọn D.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Gọi G là trọng tâm tam giác ABC.

- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng  90 °  

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 12 2017 lúc 13:30

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 9 2017 lúc 13:53

Bình luận (0)