Cho hàm số y = f ( x ) liên tục trên R và có đồ thị hàm số y = f ' ( x ) như hình bên:
Hỏi hàm số g ( x ) = f ( 3 - 2 x ) nghịch biến trên khoảng nào sau đây?
A. (-1;+∞)
B. (-∞;-1)
C. (1;3)
D. (0;2)
Câu 23: Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị như hình vẽ bên. Hàm số y = f(3 - 2x) tăng trên khoảng nào:
Hình 3: Đồ thị y=f(x)
Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y = f'(x) như hình vẽ. Hàm số y = f ( 2 x 2 + x ) có bao nhiêu cực trị?
A. 4.
B. 5.
C. 3.
D. 1.
Cho hàm số y=f(x) xác định và liên tục trên R. Đồ thị của hàm số f(x) như hình bên. Số điểm cực trị của đồ thị hàm số y=f(f(x)) bằng?
A. 8
B. 9
C. 10.
D. 11.
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ.
Hỏi hàm số y=f(f(x)) có bao nhiêu điểm cực trị ?
A. 6
B. 8
C. 7
D. 9
Cho hàm số y=f(x) liên tục trên R và có đồ thị là đường cong như hình vẽ bên. Tìm điểm cực tiểu của đồ thị hàm số y=f(x).
A. y=-2
B. x=0
C. M(0;-2)
D. N(2;2)
Đáp án C
Nhìn vào đồ thị thì điểm cực tiểu là điểm M(0;-2)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f(x) như hình vẽ
Tích phân ∫ 0 1 f ' 5 x - 3 d x bằng
A. 0,6
B. 1,8
C. 45
D. 15
Đổi biến
Do đó
Trên đoạn [-3;-1] đồ thị f(t) đi xuống nên trên đoạn [-1;2] đồ thị f(t) đi lên nên
Vì vậy
Chọn đáp án B.
Cho hàm số y= f(x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’( x) và hàm số y= f’( x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên R
B. Hàm số y= f( x) nghịch biến trên R.
C. Hàm số y= f( x) chỉ nghịch biến trên khoảng .
D. Hàm số y= f( x) nghịch biến trên khoảng (0; + ∞) .
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Cho hàm số y = f(x) liên tục và xác định trên R. Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số f( x) đồng biến trên R.
B. Hàm số f( x) nghịch biến trên R.
C. Hàm số f(x) chỉ nghịch biến trên khoảng (0; 1) .
D. Hàm số f(x) đồng biến trên khoảng (0; + ∞) .
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .