Gọi số phức z = a + bi thỏa mãn z - 1 = 1 và 1 + i z - 1 có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab = -2
B. ab = 2
C. ab = 1
D. ab = -1
Gọi số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 1 = 1 và ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab=-2
B. ab=2
C. ab=1
D. ab=-1
Đáp án C
Phương pháp
Gọi số phức đã cho có dạng . Sử dụng giả thiết để đưa ra một hệ cho a, b giải trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
Ta có:
Do z không là số thực nên ta phải có b ≠ 0 (2)
Ta lại có
Từ (1), (2), (3) ta có hệ
Gọi số phức z= a+bi (a,b∈ R) thỏa mãn |z-1|= 1 và ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab= -2
B. ab= 2
C. ab= 1
D. ab= -1
Gọi số phức z=a+bi (a,b ∈ ℝ ) thỏa mãn z - 1 = 1 v à ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng:
Gọi số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn |z-1| = 1 và (1+i)( z ¯ -1) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. a.b = 1
B. a.b = 2
C. a.b = -2
D. a.b = -1
Đáp án A
Ta có
Số phức
có phần số thực bằng a+b-1 = 1(2)
Từ (1), (2)
Gọi số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn |z-1| = 1 và (1+i)( z ¯ -1) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a, b bằng
A. a.b = 1
B. a.b = 2
C. a.b = -2
D. a.b = -1
Đáp án A
Ta có
Số phức có phần số thực bằng
a + b - 1 = 1(2)
Từ (1), (2) suy ra:
Gọi số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 1 = 1 v à 1 + i z ¯ − 1 có phần thực bằng 1 đồng thời z không là số thực. Khi đó a . b bằng
A. a . b = 1
B. a . b = 2
C. a . b = − 2
D. a . b = − 1
Đáp án A
Ta có
z − 1 = 1 ⇔ a − 1 + b i = 1 ⇔ a − 1 2 + b 2 = 1 1 .
Số phức
w = 1 + i z ¯ − 1 = 1 + i a − 1 − b i = a + b − 1 + a − b − 1 i
có phần số thực bằng a + b − 1 = 1 2 .
⇒ 1 , 2 ⇒ a − 1 2 + b 2 = 1 a + b = 2 ⇔ a + b = 2 b = 0 b = 1 ⇒ b = 1 a = 1 ⇒ a . b = 1.
Gọi M là biểu diễn số phức z=a+bi thỏa mãn z - z - 3 i = 3 z - 4 2 z - 8 = 1 Chọn khẳng định sai
A. 4a+b=16
B. 2a-b=8
C. a+2b=4
D. a-3b=6
Gọi z = a + b i là số phức thỏa mãn z + 1 - 5 i = z ¯ + 3 - i và có mô đun nhỏ nhất. Giá trị của biểu thức 2 a + 3 b + 5 a b bằng
A. 34 5
B. 24 5
C. 37
D. -19
Gọi z = a + b i là số phức thỏa mãn z - 1 - i = 5 và z - 7 - 9 i + 2 z - 8 i đạt giá trị nhỏ nhất. Giá trị của 2 a + 3 b bằng
A. 14
B. -17
C. 20
D. -12